The thesis is based on conditional averaging of fast degrees of freedom (DOF). To this end, one considers gradient systems with different time scales: slow DOFs x that vary on a time scale of O(1) and fast DOFS y on a time scale of O(ε). Under certain conditions the fast variables can be eliminated from the original equation of motion by averaging according to the probability distribution corresponding to the exploration of the accessible fast state space. However, if the fast state space exhibit metatstable subsets, that is, subsets from which the fast motion will most probably exit only on some scale of order O(1) or even larger, the standard averagig scheme may fail to reproduce the effective dynamics of the original system. This problem can be solved by restricting the averaging procedure to the metastable subsets of the fast state space, respectively, and coupling the resulting averaged equations of motion in the slow variable x by means of a transition process; the associated rate matrix is then obtained by means of the expected exit times of the fast process from the metastable sets for fixed slow variable x. The thesis consists of two fundamentally different approaches to retain the principle of 'Conditional Averaging'.
The first approach (Chapter 2) is dedicated to obtain a deeper insight into the nature of the conditionally averaged system. To this end, we take advantage of the methodology employed to extract the effective dynamics in x. The result tells us that each metastable subset of the fast dynamics is connected to one averaged equation. This motivates the idea to construct a system of fast-slow equations which allows for the incorporation of temporal fast scale effects in a natural way: the fast motion within one metastable subset is approximated by an irreducible Ornstein-Uhlenbeck subprocess that corresponds to a stochastic differential equation. We then parameterize a Markov chain model that controls the switches from one (sub)process to the other according to the transition rates between the metastable subsets of the original dynamics. A reduced system in the slow variable is then obtained by applying the well-known averaging results to each of these stochastic differential equations.
For the second approach (Chapter 3), we switch attention to the formal analysis of the Fokker-Planck equation in the asymptotic limit ε to zero, and reconsider the derivation of the effective x dynamics over order unity time scale. Separating the time scale over which the x dynamics proceed and the time scale of the metastable transitions will enable us to obtain a categorization of the various kinds of long-time effective behaviour that can emerge from the system. The conditionally averaged system is then retained as one of the different scenarios that now include metastable transitions that can also occur along the dynamics of the slow variable x.
Grundlage dieser Arbeit ist die bedingte Mittelung schneller Freiheitsgrade. Dabei betrachtet man Gradientensysteme mit verschiedenen Zeitskalen: langsame Freiheitsgrade, die sich auf einer Zeitskala ord(1) bewegen und schnelle Freiheitsgrade auf einer Zeitskala ord(ε). Unter bestimmten Bedingungen können die schnellen Variablen gemäß ihrer invarianten Verteilung aus der ursprünglichen Bewegungsgleichung eliminiert werden. Beobachtet man aber Metastabilitäten in den schnellen Freiheitsgraden, wird die gemittelte Dynamik keine gute Approximation der tatsächlichen Dynamik liefern. Dieses Problem kann jedoch gelöst werden, wenn man das Mittelungsverfahren auf die jeweiligen metastabilen Untermengen des schnellen Zustandsraumes einschränkt und die resultierenden reduzierten Bewegungsgleichungen mithilfe eines Sprungprozesses koppelt; die zugehörige Ratenmatrix bestimmt sich aus den tatsächlichen Übergängen des schnellen Prozesses zwischen den metastabilen Mengen.
Die Arbeit gliedert sich in zwei Teile. Ziel des ersten Teils (Kapitel 2) ist es, ein tieferes Verständnis der Sprungprozesse im bedingt gemittelten System zu entwickeln. Die Idee ist dabei, die schnelle Dynamik in den metastabilen Mengen durch Ornstein-Uhlenbeck-Prozesse (OU-Prozesse) zu approximieren, wobei man die Kopplung zwischen den OU-Prozessen durch asymptotische Betrachtungen der mittleren Austrittszeiten aus den metastabilen Mengen erhält.
Im zweiten Teil der Arbeit (Kapitel 3) werden die ursprünglichen Annahmen gelockert, die der bedingten Mittelung zugrundeliegen. Die Strategie bei der Herleitung der reduzierten Systeme besteht in der Mehrskalenasymptotik der assoziierten Fokker-Planck Gleichung unter Trennung aller vorhandenen Zeitskalen: langsame Dynamik, schnelle Dynamik, metastabile Übergänge in Richtung der langsamen Freiheitsgrade und von schnellen Freiheitsgraden induzierte Übergänge. Abhängig vom Verlauf der metastabilen Mengen und den Zeitskalen für die Übergänge zwischen den Mengen, erhält man verschiedene reduzierte Modelle.