Appendix F

Completion of Proof in Section 3.7.1: Evaluating $\vec{\Omega}$

Here, we show that assertion (3.118) is fulfilled, where Ω is defined by

$$
\begin{equation*}
\vec{\Omega}=\binom{\sum_{j \geq 2}\left\langle\mathcal{L}_{y}\left(\bar{C}_{j} u_{j}\right), \mathbf{1}\right\rangle_{\mu_{x}}}{\sum_{j \geq 2}\left\langle\mathcal{L}_{y}\left(\bar{C}_{j} u_{j}\right), u_{1}(x, \cdot)\right\rangle_{\mu_{x}}} \tag{F.1}
\end{equation*}
$$

The coefficients \bar{C}_{j} are given in (3.115)\& (3.116). For $j \geq 2$ we obtain

$$
\begin{aligned}
\bar{C}_{j} & =\frac{1}{\lambda_{j}(x)}\left(H_{j 0}+H_{j 1}\right)(t, \tau, x) \\
H_{j 0}+H_{j 1} & =\left\langle u_{j},\left(-\partial_{t}+\mathcal{L}_{y}\right)\left(A_{0}+A_{1} u_{1}\right)\right\rangle_{\mu_{x}}=\left\langle u_{j}, \mathcal{L}_{y}\left(A_{0}+A_{1} u_{1}\right)\right\rangle_{\mu_{x}}
\end{aligned}
$$

For $\vec{A}=\left(A_{0}, A_{1}\right)$ we use the representation $\vec{A}=\left(\mathbf{P}_{0}+\mathbf{P}_{1}\right) \vec{A}(t=0)+$ $\sum_{k \geq 2} e^{t \bar{\lambda}_{k}} \mathbf{P}_{k} \vec{A}(t=0)$ where \mathbf{P}_{0} is the orthogonal projection onto $\operatorname{span}\left\{(\mathbf{1}, 0)^{T}\right\}$ and \mathbf{P}_{1} projects orthogonal onto span $\left\{\left(\mu_{x}\left(B_{x}^{(1)}\right)-\mu\left(B^{(1)}\right), \gamma_{x}\right)^{T}\right\}$. By exploiting $\chi_{1}=\mu_{x}\left(B_{x}^{(1)}\right)+\gamma_{x} u_{1}$ we get

$$
H_{j 0}+H_{j 1}=\sum_{k \geq 2} e^{t \bar{\lambda}_{k}} G_{j k}(\tau, x)+K_{j}\left\langle u_{j}, \mathcal{L}_{y} \chi_{1}\right\rangle_{\mu_{x}}
$$

where $G_{j k}$ are some functions independent of t and K_{j} is a constant. In Section 3.5 .3 we have shown that $\left\langle u_{j}, \mathcal{L}_{y} \chi_{1}\right\rangle_{\mu_{x}}$ asymptotically has to vanish as $\epsilon \rightarrow 0$, see (3.71). Inserting the result into (F.1) we arrive at

$$
\vec{\Omega}=\sum_{k \geq 2} e^{t \bar{\lambda}_{k}} \vec{J}_{k}(\tau, x)+\vec{K}(\tau, x), \quad \vec{K} \ll 1
$$

