Appendix F

Completion of Proof in Section 3.7.1: Evaluating $\vec{\Omega}$

Here, we show that assertion (3.118) is fulfilled, where Ω is defined by

$$\vec{\Omega} = \left(\begin{array}{c} \sum_{j \ge 2} \langle \mathcal{L}_y(\bar{C}_j u_j), \mathbf{1} \rangle_{\mu_x} \\ \sum_{j \ge 2} \langle \mathcal{L}_y(\bar{C}_j u_j), u_1(x, \cdot) \rangle_{\mu_x} \end{array} \right).$$
(F.1)

The coefficients \bar{C}_j are given in (3.115)& (3.116). For $j \ge 2$ we obtain

$$\bar{C}_{j} = \frac{1}{\lambda_{j}(x)} (H_{j0} + H_{j1})(t, \tau, x),$$

$$H_{j0} + H_{j1} = \langle u_{j}, (-\partial_{t} + \mathcal{L}_{y})(A_{0} + A_{1}u_{1}) \rangle_{\mu_{x}} = \langle u_{j}, \mathcal{L}_{y}(A_{0} + A_{1}u_{1}) \rangle_{\mu_{x}}.$$

For $\vec{A} = (A_0, A_1)$ we use the representation $\vec{A} = (\mathbf{P}_0 + \mathbf{P}_1)\vec{A}(t = 0) + \sum_{k\geq 2} e^{t\bar{\lambda}_k} \mathbf{P}_k \vec{A}(t = 0)$ where \mathbf{P}_0 is the orthogonal projection onto span $\{(\mathbf{1}, 0)^T\}$ and \mathbf{P}_1 projects orthogonal onto span $\{(\mu_x(B_x^{(1)}) - \mu(B^{(1)}), \gamma_x)^T\}$. By exploiting $\chi_1 = \mu_x(B_x^{(1)}) + \gamma_x u_1$ we get

$$H_{j0} + H_{j1} = \sum_{k \ge 2} e^{t\bar{\lambda}_k} G_{jk}(\tau, x) + K_j \langle u_j, \mathcal{L}_y \chi_1 \rangle_{\mu_x},$$

where G_{jk} are some functions independent of t and K_j is a constant. In Section 3.5.3 we have shown that $\langle u_j, \mathcal{L}_y \chi_1 \rangle_{\mu_x}$ asymptotically has to vanish as $\epsilon \to 0$, see (3.71). Inserting the result into (F.1) we arrive at

$$\vec{\Omega} = \sum_{k \ge 2} e^{t \vec{\lambda}_k} \vec{J}_k(\tau, x) + \vec{K}(\tau, x), \qquad \vec{K} \ll 1.$$