
Appendix C

Transition Times Considered
in Full State Space (Sequel)

Here, we refer to Section 2.2.5 and present the derivation of the metastable
transition times T

ε
1→2 for the situation as illustrated in the right picture

of Fig. 2.5. In so doing, we directly affiliate to the achievements from Sec-
tion 2.2.5.

Situation 2: V
(1)
bar strictly monotonically decreasing. In addition, we

assume limx→∞ V
(1)
bar (x) = 0. We demonstrate the problem with the averaged

exit rates by choosing a bounded connected domain D = D(σ) = [a, b] of
the x state space such that

∫
D µ̄

(1)(x) dx ≈ 1, that is, the x trajectory will
almost never enter the complement Dc of D. In so doing, we decompose the

integral in (2.49) and exploit that the minimum of V
(1)
bar (x) in D is attained

at the right boundary b of D, that is, V
(1)
bar (b) = min{V (1)

bar (x) |x ∈ D(σ)}.
Once more we apply Laplace’s method to obtain

Eµ̄(1) [1/T ε
1→2(x)] =

∫ b

−∞

1/T ε
1→2(x)µ̄

(1)(x)dx+

∫

Dc

1/T ε
1→2(x)µ̄

(1)(x)dx

'
√
ω(1)(b)ω0(b)

π (−∂xV (1)
bar (b))

1

Z(1)
exp(− 2

σ2
V (b,m(1)(b)))

ς2

ε
exp(− 2

ς2
V

(1)
bar (b))

+
1

ε

∫

Dc

1/T1→2(x) µ̄
(1)(x) dx, (C.1)

such that an offset of the boundary b to the right will diminish the second
term on the RHS of (C.1). To get a grip on the integral over Dc, let us
assume the boundary b to be far away from the accessible part of the state
space. As we have

∫
Dc µ̄

(1)(x)dx ≈ 0, the second term on the RHS of (C.1)

seems to be negligible. However, because V
(1)
bar (x) → 0 as x → ∞, the

transition rates for fixed x ∈ D are faster decreasing asymptotically as the
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rates for x ∈ Dc. Thus, in the limit of small noise ς (and for fixed ε = ε∗),
the major contribution to Eµ̄(1) [1/T ε∗

1→2(x)] arises from the integral over Dc,

such that
∫
D 1/T ε∗

1→2(x)µ̄
(1)(x)dx has asymptotically vanishing contribution.

This phenomenon is observed even more clearly by coupling ς to ε

through (2.48) with V small
bar = V

(1)
bar (b) and letting ε → 0. As we will see,

the averaged transition rates then become a completely useless quantity
and cannot represent the effective transition rates from B(1) to B(2). The
problem is exemplified by using (C.1) and inserting (2.48). Then we asymp-
totically have

∫ b

−∞

1/T ε
1→2(x)µ̄

(1)(x) = ord((ln(1/ε))−1) −→ 0, (C.2)

∫ ∞

b
1/T ε

1→2(x)µ̄
(1)(x) = ord(ε−δ(ln(1/ε))−1) −→ ∞, 0 < δ < 1. (C.3)

Therefore Eµ̄(1) [1/T ε
1→2(x)] → ∞ as ε → 0, which completely contradicts

the physical intuition, for the trajectory will almost never reach Dc and
concentrate around the minimum of V (x,m(1)(x)) instead. The problem
of getting falsified values in the case of ε → 0 can be explained by the
following consideration: As mentioned above, the derivation of the averaged
transition rates according to (2.49) is performed under the assumption that
the metastable transitions between B(1) andB(2) happen on a time scale that
is longer than the time scale of the slow variable dynamcis’ x; for fixed ε = ε∗

and ς → 0, we easily observe the transition times for fixed x to exponentially
grow which implies the metastable transition times to happen on a time scale
longer than the x dynamics; thus, for ε = ε∗ and ς small, we obviously can

apply formula (2.49) and asymptotically get T ε∗

1→2 ' 1/Eµ̄(1) [1/T ε
1→2(x)];

in contrast, for ε → 0 and ς = ς(ε) given by (2.48) with V small
bar = V

(1)
bar (b)

we have to carefully inspect the integrals in (C.2). As we see, (C.3) tends
to infinity indicating the existence of points x ∈ (b,∞) with T ε

1→2(x) → 0
as ε→ 0, which in turn prevents the sampling of µ̄(1) before any transition
from B(1) to B(2) happens. Therefore, Eµ̄(1) [1/T ε

1→2(x)] is inappropriate in
this case.

The difficulty of finding an appropriate formulation for the metastable
transition times to B(2) is overcome by incorporating the expected exit times
from the set (−∞, b]. For vanishing ε we expect the following: As long as
the process xε (with (xε, yε) ∈ B(1)) is restricted to the domain (−∞, b),
no transitions occur, whereas exiting (−∞, b] asymptotically leads to an

instantly happening jump to B(2), for V
(1)
bar (x) < V

(1)
bar (b) whenever x > b.

However, as the transition probability depends on the rate 1/T ε
2→1(x) as

well, we have to incorporate the course of V
(2)
bar (x) into our considerations.

More precise, whenever T ε
1→2(x)/T ε

2→1(x) → ∞, the transition probability
to jump to B(2) (at xε(t) = x) will asymptotically converge to zero. But
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this is exactly the case for V
(2)
bar (x) < V

(1)
bar (x). In order to modify the effect

let us assume for simplicity that V
(2)
bar (x) is strictly monotonically increasing

with limx→−∞ V
(2)
bar (x) = 0. This implies the existence of a pointm such that

V
(1)
bar (m) = V

(2)
bar (m). If we assume b < x < m, we obtain V

(2)
bar (x) < V

(1)
bar (x) <

V small
bar = V

(1)
bar (b), such that the process xε has to exit the domain (−∞,m]

for an instantly happening jump from B(1) to B(2) in the asymptotic limit
ε→ 0.

An illustration of the problem is shown in Figure C.1 and Fig. C.2 below.

The left side of Fig. C.1 visualizes a possible choice of V small
bar = V

(1)
bar (b

(1)) =
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Figure C.1: left: Illustration of V
(i)
bar, i = 1, 2 and b(2) < m < b(1); middle: transition

probabilities (time step dt = 0.01) corresponding to (2.48) with V small
bar = V

(1)
bar (b

(1)) and
ε = 10−3; right: transition probabilities with ε = 10−12.

V
(2)
bar (b

(2)) with b(1) = 2 > m = 0. The picture in the middle shows the
transition probabilities p1→2 = pε12(dt, x), p2→1 = pε21(dt, x) to jump over
the barrier for moderately chosen ε = 10−3 and time step dt = 1/100.
At the right we illustrate the transition probabilities for very small ε =
10−12. We clearly observe that for vanishing ε the particle will jump over
the barrier once it has reached b(1) and b(2), respectively. In Fig. C.2 the
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Figure C.2: Same as Figure C.1, but this time b(1) < m < b(2).

situation is contrary: The picture at the left illustrates the choice of V small
bar =

V
(1)
bar (b

(1)) = V
(2)
bar (b

(2)) where this time b(1) = −1 < m = 0 and thus b(2) > m.
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The transition probabilities for ε = 10−12 at the right-hand side reveal

p1→2 = pε12(dt, x) ≈ 0 for x < m, p2→1 = pε12(dt, x) ≈ 1 for x > m.

The model for the experiments is chosen from Section 2.3 with potential
given in (2.57).

Summarisingly, under the assumption of strictly monotonic decrease of

V
(1)
bar with limx→∞ V

(1)
bar (x) = 0, and strictly monotonic increase of V

(2)
bar with

limx→−∞ V
(2)
bar (x) = 0 we obtain the following: Denote m ∈ R the point

with V
(1)
bar (m) = V

(2)
bar (m). Our result in the limit ε → 0 comprise the

Smoluchowski dynamics x(i)(t) for i = 1, 2 that correspond to the potentials
V
(
x,m(i)(x)

)
, respectively. For simplicity we assume that V (x,m(i)(x)) has

one local minimum, for i = 1, 2 respectively, and agree V (x
(i)
∗ ,m(1)(x

(i)
∗ )) =

min{V
(
x,m(i)(x)

)
|x ∈ R} such that x

(1)
∗ < m < x

(2)
∗ . Now, we choose

ς = ς(ε) to be defined by (2.48) with V small
bar = V

(1)
bar (b

(1)) and b(1) ∈ (x
(1)
∗ ,∞)

and denote b(2) the uniquely determined point x with V small
bar = V

(2)
bar (x).

Finally, we define the expected exit time from the set D over the process
x(i)(t) with starting point x∗ by Ex∗ [τD(x(i)(t))] for i = 1, 2. Now, we are in
position to explicitly present the metastable transition times by the precise
asymptotics in the limit of vanishing ε:

T ε
1→2 ' E

x
(1)
∗

[τD(1)(x(1)(t)],

T ε
2→1 ' E

x
(2)
∗

[τD(2)(x(2)(t)],

where D(1) = (−∞,max(b(1),m)] and D(2) = [min(b(2),m),∞).


