Appendix C

Transition Times Considered
in Full State Space (Sequel)

Here, we refer to Section 2.2.5 and present the derivation of the metastable
transition times Tiﬂz for the situation as illustrated in the right picture
of Fig. 2.5. In so doing, we directly affiliate to the achievements from Sec-
tion 2.2.5.

Situation 2: Vb(;r) strictly monotonically decreasing. In addition, we

assume lim,_, Vé;g (x) = 0. We demonstrate the problem with the averaged

exit rates by choosing a bounded connected domain D = D(o) = [a,b] of
the = state space such that fD ﬂ(l)(x) dz ~ 1, that is, the = trajectory will
almost never enter the complement D€ of D. In so doing, we decompose the

integral in (2.49) and exploit that the minimum of V(l)(ac) in D is attained

bar

at the right boundary b of D, that is, V(l)(b) = min{Vb(ig () |z € D(o)}.

bar
Once more we apply Laplace’s method to obtain

b
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+ %/01/7&—»2(56) ﬂ(l)(x) du, 1)

such that an offset of the boundary b to the right will diminish the second
term on the RHS of (C.1). To get a grip on the integral over D¢, let us
assume the boundary b to be far away from the accessible part of the state
space. As we have [, M (x)dz ~ 0, the second term on the RHS of (C.1)

seems to be negligible. However, because Vb(ale () — 0 as z — oo, the
transition rates for fixed x € D are faster decreasing asymptotically as the
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rates for € D¢ Thus, in the limit of small noise ¢ (and for fixed € = €*),
the major contribution to E;)[1/ TS ()] arises from the integral over D¢,
such that [, 1/ < o(2)aM (x)d2 has asymptotically vanishing contribution.

This phenomenon is observed even more clearly by coupling ¢ to e
through (2.48) with Vismall = Vb(;z (b) and letting € — 0. As we will see,
the averaged transition rates then become a completely useless quantity
and cannot represent the effective transition rates from BW to B®. The
problem is exemplified by using (C.1) and inserting (2.48). Then we asymp-
totically have

b
/ YT o@iV(@) = ord((n(1/e)™)  — 0, (C.2)

—00

/boo 1T¢ o(x)iM(z) = ord(e%(In(1/e)™!) — o0, 0< 6 < 1. (C.3)

Therefore E;1)[1/71"5(x)] — o0 as € — 0, which completely contradicts
the physical intuition, for the trajectory will almost never reach D¢ and
concentrate around the minimum of V(z,m™ (x)) instead. The problem
of getting falsified values in the case of ¢ — 0 can be explained by the
following consideration: As mentioned above, the derivation of the averaged
transition rates according to (2.49) is performed under the assumption that
the metastable transitions between B4 and B happen on a time scale that
is longer than the time scale of the slow variable dynamcis’ z; for fixed € = €*
and ¢ — 0, we easily observe the transition times for fixed = to exponentially
grow which implies the metastable transition times to happen on a time scale
longer than the x dynamics; thus, for € = €¢* and ¢ small, we obviously can

apply formula (2.49) and asymptotically get ?i*—a ~ 1/E 0 [1/ T (2)];
in contrast, for ¢ — 0 and ¢ = ¢(e) given by (2.48) with Vsmall = V(l)(b)

we have to carefully inspect the integrals in (C.2). As we see, (C.3) l‘zégnds
to infinity indicating the existence of points = € (b,00) with 7€ o(x) — 0
as € — 0, which in turn prevents the sampling of i) before any transition
from B to B?) happens. Therefore, E, o [1/T5(x)] is inappropriate in
this case.

The difficulty of finding an appropriate formulation for the metastable
transition times to B® is overcome by incorporating the expected exit times
from the set (—oo,b]. For vanishing € we expect the following: As long as
the process z¢ (with (z€,9¢) € BW) is restricted to the domain (—o0,b),
no transitions occur, whereas exiting (—oo,b] asymptotically leads to an
instantly happening jump to B®, for Vb(iz () < Vb(;z (b) whenever = > b.
However, as the transition probability depends on the rate 1/75 () as
well, we have to incorporate the course of Vb(jg (z) into our considerations.
More precise, whenever 7,¢ o(x)/75 ,,(x) — oo, the transition probability
to jump to B? (at 2¢(t) = x) will asymptotically converge to zero. But
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this is exactly the case for Vb(jg (x) < Vb(;g (). In order to modify the effect
let us assume for simplicity that Vb(jz (x) is strictly monotonically increasing
with lim,_, _ 4 Vb(jg (z) = 0. This implies the existence of a point m such that
Vb(ig (m) = Vb(a22 (m). If we assume b < < m, we obtain Vb(a22 (x) < Vb(ig (x) <
ysmall — Vb(;g (b), such that the process z¢ has to exit the domain (—oo, m|
for an instantly happening jump from B® to B®) in the asymptotic limit
e— 0.

An illustration of the problem is shown in Figure C.1 and Fig. C.2 below.
The left side of Fig. C.1 visualizes a possible choice of V;small = V(l)(b(l)) =
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Figure C.1: left: Illustration of Vb(;i,i = 1,2 and b® < m < bV; middle: transition

probabilities (time step dt = 0.01) corresponding to (2.48) with VEmall = Vb(;r) (M) and
€ = 1073, right: transition probabilities with e = 1072,

Vb(jg (b)) with b) = 2 > m = 0. The picture in the middle shows the
transition probabilities p1_2 = piy(dt, x), p2—1 = p5;(dt,z) to jump over
the barrier for moderately chosen ¢ = 1073 and time step dt = 1/100.
At the right we illustrate the transition probabilities for very small ¢ =

1072, We clearly observe that for vanishing e the particle will jump over
the barrier once it has reached b") and b, respectively. In Fig. C.2 the
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Figure C.2: Same as Figure C.1, but this time b < m < ®.

situation is contrary: The picture at the left illustrates the choice of th;‘;au =

Vb(ig (b)) = Vb(jg(b@)) where this time b)) = —1 < m = 0 and thus b > m.
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The transition probabilities for € = 107!? at the right-hand side reveal
P12 = pia(dt,z) =~ 0  for x < m, po—1 = pio(dt,z) = 1 for x > m.

The model for the experiments is chosen from Section 2.3 with potential
given in (2.57).
Summarisingly, under the assumption of strictly monotonic decrease of

Vb(ig with lim,_, Vb(ale (x) = 0, and strictly monotonic increase of Vb(jg with

lim, oo AR () = 0 we obtain the following: Denote m € R the point

bar
with Vb(;B (m) = Vb(;z (m). Our result in the limit ¢ — 0 comprise the
Smoluchowski dynamics z(?) (t) for i = 1,2 that correspond to the potentials
V(z, m® (z)), respectively. For simplicity we assume that V (z, m®(z)) has
one local minimum, for ¢ = 1,2 respectively, and agree V(x,(ki),m(l)(xg))) =
min{V (z,m?(z)) |z € R} such that 2V < m < 2?,
¢ = 5(€) to be defined by (2.48) with VEmall = (1)) and 5™ ¢ (21, 00)

and denote b the uniquely determined point z with Vg;}an = Vb(jg (z).
Finally, we define the expected exit time from the set D over the process
2 (t) with starting point z, by E,,[rp(z¥(t))] for i = 1,2. Now, we are in
position to explicitly present the metastable transition times by the precise

asymptotics in the limit of vanishing e:

Now, we choose

Ti_y ~ E olrpo @),
To = E olrpe @@ @),

where DY) = (=00, max (b)), m)] and D@ = [min(b®,m), c0).



