
Chapter 1

Introduction to Conditional
Averaging

In complex system modeling, one often finds mathematical models that con-
sist of many differential equations with different temporal and spatial scales.
One of the basic approaches to the reduction of complexity is based on elim-
ination of fast degrees of freedom (DOF): Describe the effective dynamical
behaviour in terms of some slow (or essential) DOF of the system, while the
collective effect of the majority of fast (or inessential) DOF is represented
implicitly.

Many different mathematical techniques are available as, e.g., averaging
for deterministic [1, 15, 38] and stochastic dynamical systems [14, 15, 22,
23, 24], stochastic modeling [28, 30, 33, 45], adiabatic theories [3, 6, 17, 44],
or homogenization in time [4, 5, 6]. These techniques have mathematically
been considered in a variety of articles. However, surprisingly few articles
deal with the question of how to extend the approach to the case where the
approximation may be inappropriate for reproducing the effective behaviour
of the original dynamical system. The present thesis is motivated by the ob-
servation that the usual averaging techniques do not account for fast scale
effects which generatea time scale in the system which is comparable to the
time scale of the slow motion or even longer. This phenomenon is related
to the notion of metastability in the fast dynamics, i.e., to the existence of
metastable subsets in the fast state space [11, 41, 20, 39]: There is some
subset of the accessible state space from which the fast motion will most
probably exit only on some time scale of order ord(1) or even larger. Con-
sequently, the thesis is concerned with the effect of metastable subsets in
the accessible state space of the fast DOF on the slow DOF. We basically
consider stochastic differential equations where the fast mode of the system
rarely switches from one almost invariant set in its state space to another
one such that the time scale of the switching is as slow as the slow modes of
the system. The basic idea is that the fast process then can be decomposed
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into several ’almost irreducible’ subprocesses, each of which corresponds to
one metastable or almost invariant state. To quantify this principle, the rare
transitions between these states are described by means of the expected exit
times. They can be used to parametrize a Markov chain model mimicking
the transitions between the states.

1.1 The System under Consideration

A prototype system for analyzing metastability is the Smoluchowski dynam-
ics of a particle in two dimensions, with the motion along one direction (y)
occurring on a fast time scale ε� 1 and the motion along the other direction
(x) occurring on a slower, order unity time scale ( [43]):

ẋε = −DxV (x, y) + σẆ1 (1.1)

ẏε = −1

ε
DyV (x, y) +

σ√
ε
Ẇ2, (1.2)

with 0 < ε � 1, DxV, DyV denoting the derivatives of the potential V =
V (x, y) wrt x, y, respectively, and Wj, j = 1, 2 standard Brownian motion.
Such multiscale dynamics could arise in rescaled coordinates from a potential
V which is steeper in the y direction than in the x direction.

We also can analyze the dynamics (1.1)&(1.2) through the equivalent
Fokker-Planck equation

∂tρ
ε = Lερε (1.3)

Lε =
1

ε
Lx + Ly, (1.4)

which describes the evolution of the probability density ρε(t, x, y)µ(x, y) of
the state of the system, where µ(x, y) is the invariant probability density of
the dynamics. Lε is a differential operator with Lx acting on the variable
y but depending on x, and Ly acting as a differential operator on x and
depending on y. For the Smoluchowski dynamics, we have

Lx =
σ2

2
∆y − DyV (x, ·) ·Dy , (1.5)

Ly =
σ2

2
∆x − DxV (·, y) ·Dx , (1.6)

µ(x, y) =
1

Z
exp(−βV (x, y)), Z =

∫
exp(−βV (x, y)) dxdy. (1.7)

The invariant density µ depends on the inverse temperature β = 2/σ2. The
Fokker-Planck equation is considered within the Hilbert space weighted with
respect to the invariant probability density:

L2(µ) =

{
g = g(x, y) :

∫
|g(x, y)|2µ(x, y) dxdy <∞

}
.
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It is endowed with the natural inner product

〈f, g〉µ =

∫
f(x, y)ḡ(x, y)µ(x, y) dxdy, f, g ∈ L2(µ),

which renders the Fokker-Planck equation (1.3) self-adjoint (so that, in par-
ticular, it also serves as the backward Kolmogorov equation describing the
evolution of the expectations of functions of the state of the system). Self-
adjointness of the generator in L2(µ) is equivalent to reversibility of the
associated Markov process, as expressed by the so-called detailed-balance
condition of the probability transition function p(t, x,dy):

p(t, x,dy)µ(dx) = p(t, y,dx)µ(dy).

1.2 The Averaging Principle

Averaging theorems describe the effective motion of the slow DOF in the
limit ε → 0. Their statement is based on a decoupling of fast and slow
motion:

For any given state of the slow DOF, there is an accessible part of
the state space that the fast DOF completely explore before the
position of the slow ones changes effectively. The fast variables
are eliminated from the original equation of motion by averaging
according to the probability distribution corresponding to the
exploration of the accessible state space. The effective motion of
the slow variables is governed by an averaged equation of motion.

Under suitable conditions on the potential energy V (cf. [15]), averaging
completely characterizes the limit x0 of the slow dynamics xε for ε → 0 as
obeying an averaged SDE

ẋ0 = −
∫

Rn

DxV (x, y)µx(y)dy + σẆ1, (1.8)

where µx denotes the (presumed unique) invariant density of the fast dy-
namics for fixed x:

µx(y) =
1

Zx
exp(− 2

σ2
V (x, y)), Zx =

∫

Rn

exp(− 2

σ2
V (x, y)) dy. (1.9)

We expect the invariant probability density of (1.8) to be obtained by inte-
grating µ over the fast variable y:

µ̄(x) =

∫
µ(x, y) dy. (1.10)

In order to derive the effective x dynamics in terms of the ensemble
description (1.3), we will restrict attention to an initial probability density
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which modulates the invariant probability density only through a function
of x: ρε(t = 0, x, y) = f(x) ( [43]). For preparation of this discussion we
define the weighted Hilbert space L2(µx) acting on fibres of constant x, with
inner product

〈f, g〉µx =

∫
f(y)ḡ(y)µx(y) dy.

The restriction on the initial condition is equivalently expressed by means
of the projection operator Π

(Πg)(x, y) =

∫
g(x, y)µx(y) dy, (1.11)

projecting onto functions which do not depend on y. With it we obtain

Πρε(t = 0) = ρε(t = 0).

Using the inner product 〈·, ·〉µx , the projection operator Π can be expressed
as

Πg = 〈g,1〉µx · 1,

which immediately provides

ΠLx = 0 = LxΠ.

Here, we have used Lx1 = 0 and L∗
x1 = 0 with L∗

x denoting the formal
adjoint of Lx. The operator Π allows the averaged force along the x direction
in the dynamics (1.8) as ΠDxV and the averaged probability density µ̄ to be
related to the averaged potential V , also variously referred to as thepotential
of mean force or conformational free energy landscape:

ΠDxV =

∫
DxV (x, y)µx(y) dy = DxV ,

V (x) = − 1

β
ln µ̄(x).

The corresponding Fokker-Planck equation is considered in L2(µ̄) and reads

∂tρ
0 = Lρ0, (1.12)

where L is the operator Lε averaged against the invariant measure of the y
dynamics:

L = ΠLεΠ = ΠLyΠ =
σ2

2
∆x − DxV ·Dx .
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1.3 Breakdown of Averaging Principle

We now consider the situation in which the fast dynamics exhibit metastable
states. That is,the effective dynamics in the fast degrees of freedom (DOF)
can be described by (rare) jumps between certain metastable subsets of state
space, while in between the jumps the dynamics evolves on a fast time scale
inside one of these metastable subsets. Under this condition, the standard
averaging procedure may fail to reproduce the effective dynamics of the
original system, mainly for the following reason: The averaging principle is
based on the assumption that the fast DOF completely explore the accessible
state space before any substantial changes in the slow DOF.This can fail to
hold in the presence of metastability in the fast dynamics, in particular if
there is some subset of the accessible state space from which the fast motion
will most probably exit only on some time scale comparable or ever greater
than the ord(1) time scale of the slow motion. We can make this statement
rigorous by introducing the mean exit time for the process yεx from one of the
metastable subsets, where yεx is governed by the SDE (1.2) for fixed x. If we
assume the existence of two metastable sets Bx∪Bc

x = Rn with Bx∩Bc
x = ∅,

the mean exit time τ̄ εx(y) from Bx is the expected value of the first exit time
τ εx(y) of the process yεx from Bx started at yεx(t = 0) = y, which is defined
as

τ εx(y) = inf{t ∈ R+ : yεx(t) /∈ Bx, y
ε
x(0) = y}.

Although we would expect that exit times depend on the starting point,
i.e., yεx(0) = y, it can be shown that there do exist subsets D, for which
the exit time is basically independent for all states y ∈ D. Especially for a
metastable collection of sets Di of the Smoluchowski dynamics, in the limit
of vanishing noise intensity we are able to assign a first exit time to an entire
subset Di rather than to single points y ∈ Di, see [20, 41, 40]. Thus, as a
consequence, the mean exit time τ̄ εx from Bx can be quoted independently
of the starting point y ∈ Bx. The question of the asymptotic behaviour of
the mean exit time for vanishing noise term σ has been discussed in detail
by, for example, Freidlin and Wentzell in [15], from which the following
result is taken (up to some slight modifications tailored to (1.1)&(1.2)) :

Theorem 1.3.1 ( [15, Thm. 4.1 of Chap. 4], [40]) Let the potential
V (x, ·) be twice continuously differentiable, let ymin be one of its local min-
ima, and Bx a metastable subset with sufficiently smooth boundary ∂Bx
containing ymin in its interior, but containing no other local minimum of
V (x, ·) within its interior. Without loss of generality we may assume that
V (x, ymin) = 0. Suppose that y0 is the unique point on the boundary ∂Bx
with

V x
bar = V (x, y0) = min{V (x, y) : y ∈ ∂Bx}.
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The mean exit time τ̄ εx for the process yεx with yεx(0) ∈ Bx then satisfies

lim
σ→0

σ2 ln
τ̄ εx
ε

= 2V x
bar.

As we are interested in the case where the averaging principle fails, let
us have a closer look at the relation between the time scale of the fast
motion and the exit times from metastable subsets in the fast DOF. The
result of the above theorem tells us two things: First, the separation of time
scales τ̄ εx � 1 can be realized by fixing σ and the potential energy function;
then we are always able to find an ε small enough such that averaging
yields a good approximation of the effective dynamics; second, if we decrease
σ or increase the potential energy barrier, the smallness parameter ε has
to be chosen exponentially small such that the averaged system still is a
satisfactory approximation. If we want to study the effect of metastabilities
in the fast motion, it is natural to relate V x

bar/σ
2 to ε so that the exit times

from metastable sets vary on a timescale of order ord(1), that is,

τ̄ εx ' C(x) ε exp(
2

σ2
V x

bar) = ord(1), (1.13)

where C(x) denotes the subexponential pre-factor that necessarily depends
on x. The symbols ' and ord(1) are defined at the end of the introduction.

Metastable Fast Dynamics

The effect of metastability on every fibre

Φ(x) = {(x, y) : y ∈ R}

of the fast state space is related to the dominant spectrum of the generator

Lx. In case of two metastable subsets B
(1)
x , B

(2)
x for every x, the generator

Lx has two dominant eigenvalues, λ0 = 0 and a small negative eigenvalue
λ1(x) ≈ 0, whereas the remainder {λk : k ≥ 2} ⊂ R− is bounded away
from the origin by an order unity spectral gap. The eigenfunction u0 asso-
ciated to λ0 is given exactly by u0 = 1, whereas the eigenfunction u1(x, ·)
associated to λ1(x) is an approximate stepfunction that is almost constant
on the metastable subsets ( [11, 19, 20, 39, 41]):

u1(x, ·) ≈

√√√√µx(B
(2)
x )

µx(B
(1)
x )

1
B

(1)
x

−

√√√√µx(B
(1)
x )

µx(B
(2)
x )

1
B

(2)
x
. (1.14)

It is shown in [43], that the averaging principle according to (1.8) is in-
appropriate for representing the effective dynamics if the size of the most
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dominant eigenvalue λ1(x) 6= 0 of Lx is comparable to the size of the small-
ness parameter ε, that is, if we explicitly couple λ1(x) to ε and assume for
every x

λ1(x) = ε λ̃1(x), λ̃1(x) = ord(1). (1.15)

This establishes a relation between the time scale of the fast motion and the
exit rate/time from the metastable subsets in the fast DOF since τ̄ εx can be
expressed in terms of λ1; compare (1.13).

As a consequence of (1.15) we can express Lx in the following form:

Lx = ε λ̃1(x)
〈
·, u1(x, ·)

〉
µx
u1(x, ·) + Rx = εLact

x + Rx, (1.16)

with Rxuk = 0 for k = 0, 1.

1.4 Conditional Averaging

The scaling assumption (1.15) represents a modeling step which will lead
tothe derivation of the principle of conditional averaging that may yield an
appropriate reduced model in cases where the ordinary averaging scheme
fails: Since we observe rapid sampling of the invariant density µx in each of
the metastable subsets, we propose averaging over each of these sets alone
and to couple the resulting systems by a Markovian switching process which
describes the flipping behaviour between the metastable sets.

In [43], these limit dynamics are derived in terms of multiscale analysis
of the Fokker-Planck equation (1.3) by projecting the ensemble dynamics
onto the subspace spanned by the dominant spectrum of Lx. To this end, we
define the projection

(Π̃f)(x, y) =
〈
f,1
〉
µx

1 +
〈
f, u1

〉
µx
u1(x, ·),

and exploit Π̃Rx = 0. For the limit dynamics ρε → ρ0 we have Π̃ρ0 = ρ0

and, similarly

∂tρ
0 = Π̃LεΠ̃ρ0 = (Π̃LyΠ̃ + Lact

x )ρ0, (1.17)

where we have used (1.16). The explicit form is derived by reformulating
for ρ0 = Π̃ρ0 the ansatz

ρ0(t, x, y) = A0(t, x)1(x, y) + A1(t, x)u1(x, y).

Assuming equality in (1.14), we obtain the equivalent formulation

ρ0(t, x, y) = c1(t, x)1B(1)
x

(y) + c2(t, x)1B(2)
x

(y),

with 1D denoting the indicator function of a set D. We proceed by assuming

that the boundary between the metastable subsets B
(1)
x and B

(2)
x does not
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depend on x. By applying the orthogonal projections
〈
· ,1

B
(i)
x

〉
µx

for i = 1, 2

to both sides of equation (1.17), we end up with the evolution system

(
∂tc1
∂tc2

)
=

(
L(1)

0

0 L(1)

)(
c1
c2

)
+ Qx

(
c1
c2

)
, (1.18)

Qx =
|λ1|
ε

(
−µx(B(2)

x ) µx(B
(2)
x )

µx(B
(1)
x ) −µx(B(1)

x )

)

, (1.19)

where the operators L(i)
are given for i = 1, 2 by

L(i)
=

σ2

2
∆x −

(∫
DxV (x, y)µ(i)

x (y) dy

)
·Dx .

The densities µ
(1)
x and µ

(2)
x are supported on B

(1)
x and B

(2)
x only, and are

given explicitly by

µ(i)
x (y) =

1

µx(B
(i)
x )

µx(y)1B(i)
x
, i = 1, 2. (1.20)

The second term Qx in (1.18) denotes a rate matrix1 that generates a tran-
sition process between the levels i = 1 and i = 2 for fixed slow variable
x.

Consequently, the effective x dynamics within the SDE formulation will
be characterized as follows:

ẋ0 = −
∫
DxV (x, y)µ(I(t,x))

x (y) dy + σ Ẇ1, (1.21)

with I(t, x) denoting the Markov jump process whose transition rates are

given by Qx. It turns out that L(i)
, i = 1, 2 is an effectively computable

Fokker-Planck generator corresponding to the averaged potential V
(i)

with

∫
DxV (x, y)µ(i)

x (y) dy = DxV
(i)

(x),

V
(i)

(x) = − 1

β
ln

∫

B
(i)
x

exp(−βV (x, y))dy. (1.22)

1.5 Related Approaches

The conditionally averaged dynamics (1.21) may serve as the starting point
for further examinations which arise from a variety of questions and concerns

1This is not given a priori as we have to consider the matrix Qx in a weighted space.
The function spaces under consideration are examined in detail in Section 3.5.1. For
advance information, see Remark 3.5.1.
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arising from a closer inspection of system (1.18) and its derivation2. In
this direction, we may basically turn our attention to the derivation of a
thorough understanding of the conditionally averaged system on the one
hand, and, on the other hand, a reconsideration of the asymptotic procedure
that was used to obtain the result. These considerations will motivate two
fundamentally different approaches to retain the principle of ’Conditional
Averaging’, which we shortly introduce in the following. A completion of
the introductory comments on the two approaches is given at the beginning
of the corresponding chapters.

The first approach is dedicated to obtain a deeper insight into the nature
of the conditionally averaged system. To this end, we take advantage of the
methodology employed to extract the effective dynamics (1.21). The result
tells us that each metastable subset of the fast dynamics is connected to
one averaged equation. This motivates the idea to construct a system of
fast-slow equations which allows for the incorporation of temporal fast scale
effects in a natural way: the fast motion within one metastable subset is
approximated by an irreducible subprocess that corresponds to a stochastic
differential equation. We then parameterize a Markov chain model that
controls the switches from one (sub)process to the other according to the
transition rates between the metastable subsets of the original dynamics. A
reduced system in the slow variable is then obtained by applying the well-
known averaging results from [35, 28, 25, 15] to each of these stochastic
differential equations.

For the second approach, we switch attention to the formal analysis of
the Fokker-Planck equation (1.3) in the asymptotic limit ε→ 0, and recon-
sider the derivation of the effective x dynamics over order unity time scale.
Separating the time scale over which the x dynamics proceed and the time
scale of the metastable transitions will enable us to obtain a categorization
of the various kinds of long-time effective behaviour that can emerge from
the system (1.3). The conditionally averaged system (1.18) is then retained
as one of the different scenarios that now include metastable transitions that
can also occur along the dynamics of the slow variable x.

Figure 1.1 visualises the structuring of the thesis into two independent
parts corresponding to the two different approaches to ’Conditional Averag-
ing’. The key idea of the ansatz illustrated in the left-hand side of the figure
is to replace the fast dynamics within each of the metastable sets by irre-
ducible processes that are specified as Ornstein-Uhlenbeck (OU) processes.
The OU processes are coupled by a transition chain that recovers the transi-
tion rates between the metastable fast dynamics for fixed x. After applying
simple averaging techniques to the approximated system with OU processes,
we finally end up with the averaged dynamics that we call OU-averaged dy-
namics in the following. Consequently, the approach requires two different

2We will dwell on these questions in Sections 2.1 and 3.1
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Figure 1.1: Two possible ansatzes to derive Conditional Averaging.

steps, “replacing of fast dynamics” and “averaging” for short, but the es-
sential step is given by the replacement of the fast dynamics by coupled
OU processes such that the approach as a whole will be called “Replacing
(metastable) fast dynamics by coupled OU processes”.

The ansatz that is pursued in the second part of the thesis is shown at
the right-hand side of Figure 1.1. Now, we start from the ensemble dynam-
ics (1.3), and develop a systematic mathematical strategy for the derivation
of appropriate reduced models. All of these models are derived from a self-
consistent mathematical framework for eliminating the unresolved variables
that is mathematically rigorous in a suitable asymptotic limit. In so doing,
we distinguish between three different parameters: the smallness parameter
ε which describes the time scale separation of the y and x motion, the pa-
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rameter δ which defines the time scale of the metastable transitions that are
induced by the y dynamics, and, finally, the parameter ε̃ which describes the
time scale of the metastable transitions that are induced by the x dynamics.
The reduced model that is appropriate to describe the effective dynamics
in the limit ε → 0 will depend on the relation of the smallness parame-
ter ε to the parameters δ and ε̃ that describe the order of the metastable
transitions. Therefore, we will refer to the approach by calling it “Multi-
scale asymptotics with disparate transition scales”. Assuming that the fast
dynamics exhibits metastability (with two metastable sets), the procedure
provides us with reduced model equations that can be considered as an ex-
tension of the principle of Conditional Averaging: The solution over time

scale ord(1) consists in any case of the averaged generators L(1)
and L(2)

; as
for the dynamics (1.18), we again obtain some exchange term, but this time
it can appear on a longer time scale and is not necessarily given by Qx.

Notation

Throughout the thesis we use the following relation symbols:

≈ approximately equal

∼ proportional

' asymptotically equal: f(ε) ' g(ε) iff lim
ε→0

f(ε)

g(ε)
= 1

.
= approaches the limit

+ f(ε) + g(ε) iff
f(ε)

g(ε)
= 1 + O(ε)

� asymptotically smaller

� asymptotically larger

. asymptotically equal or smaller

& asymptotically equal or larger

ord f(ε) = ord(g(ε)) iff lim
ε→0

|f(ε)|
|g(ε)| = C, C > 0

O f(ε) = O(g(ε)) iff lim
ε→0

|f(ε)|
|g(ε)| = C, C ≥ 0

o f(ε) = o(g(ε)) iff lim
ε→0

|f(ε)|
|g(ε)| = 0
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