Title:
Characterizing Nonuniform Hyperbolicity by Mather-Type Admissibility
Author(s):
Chemnitz, Robin; Dragičević, Davor
Year of publication:
2025
Available Date:
2025-11-24T08:28:02Z
Abstract:
We consider linear cocycles acting on Banach spaces which satisfy the assumptions of the multiplicative ergodic theorem. A cocycle is nonuniformly hyperbolic if all Lyapunov exponents are non-zero, which is equivalent to the existence of a tempered exponential dichotomy. We provide an equivalent characterization of nonuniform hyperbolicity in terms of a Mather-type admissibility of a pair of weighted function spaces. As an application we give a short proof of the robustness of tempered exponential dichotomies under small linear perturbation.
Part of Identifier:
e-ISSN (online): 1572-9222
Keywords:
Nonuniform hyperbolicity
Mather operator
Admissibility
Lyapunov exponents
DDC-Classification:
510 Mathematik
Publication Type:
Wissenschaftlicher Artikel
URL of the Original Publication:
DOI of the Original Publication:
Journaltitle:
Journal of Dynamics and Differential Equations
Department/institution:
Mathematik und Informatik
Institut für Mathematik
Comments:
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.