dc.contributor.author
Chemnitz, Robin
dc.contributor.author
Dragičević, Davor
dc.date.accessioned
2025-11-24T08:28:02Z
dc.date.available
2025-11-24T08:28:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45794
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45507
dc.description.abstract
We consider linear cocycles acting on Banach spaces which satisfy the assumptions of the multiplicative ergodic theorem. A cocycle is nonuniformly hyperbolic if all Lyapunov exponents are non-zero, which is equivalent to the existence of a tempered exponential dichotomy. We provide an equivalent characterization of nonuniform hyperbolicity in terms of a Mather-type admissibility of a pair of weighted function spaces. As an application we give a short proof of the robustness of tempered exponential dichotomies under small linear perturbation.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Nonuniform hyperbolicity
en
dc.subject
Mather operator
en
dc.subject
Admissibility
en
dc.subject
Lyapunov exponents
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Characterizing Nonuniform Hyperbolicity by Mather-Type Admissibility
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10884-024-10398-z
dcterms.bibliographicCitation.journaltitle
Journal of Dynamics and Differential Equations
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
3197
dcterms.bibliographicCitation.pageend
3216
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10884-024-10398-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1572-9222