Haupttitel:
Characterizing Nonuniform Hyperbolicity by Mather-Type Admissibility
Autor*in:
Chemnitz, Robin; Dragičević, Davor
Datum der Freigabe:
2025-11-24T08:28:02Z
Abstract:
We consider linear cocycles acting on Banach spaces which satisfy the assumptions of the multiplicative ergodic theorem. A cocycle is nonuniformly hyperbolic if all Lyapunov exponents are non-zero, which is equivalent to the existence of a tempered exponential dichotomy. We provide an equivalent characterization of nonuniform hyperbolicity in terms of a Mather-type admissibility of a pair of weighted function spaces. As an application we give a short proof of the robustness of tempered exponential dichotomies under small linear perturbation.
Teil des Identifiers:
e-ISSN (online): 1572-9222
Freie Schlagwörter:
Nonuniform hyperbolicity
Mather operator
Admissibility
Lyapunov exponents
DDC-Klassifikation:
510 Mathematik
Publikationstyp:
Wissenschaftlicher Artikel
Zeitschrift:
Journal of Dynamics and Differential Equations
Fachbereich/Einrichtung:
Mathematik und Informatik
Institut für Mathematik
Anmerkungen:
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.