This article explores how water performs on the contemporary stage. Drawing on theorists such as Rosi Braidotti, Karen Barad, and Joanna Zylinska, we investigate water in its various dramaturgical functions as matter, medium, and metaphor to sketch performance alternatives that highlight nonhuman forms of agency. Focusing on the work of sound artist and geographer AM Kanngieser and their use of water to listen to the Anthropocene as well as on the Filter Theatre production of David Farr’s play Water (2007/2013), we want to highlight how diffraction and resonance alternately provide ways of rethinking traditional configurations of making meaning. The sonic dimension of water, in particular, turns into a productive site for manifesting the heightened relationality of the Anthropocene world. The article thus argues that the material dramaturgies of water show how the crucial interactions between science, philosophy, and performance manage to sketch new posthuman knowledge formations.
View lessFluid flow in crystalline rocks in the absence of fractures or ductile shear zones dominantly occurs by grain boundary diffusion, as it is faster than volume diffusion. It is, however, unclear how reactive fluid flow is guided through such pathways. We present a microstructural, mineral chemical, and thermodynamic analysis of a static fluid-driven reaction from dry granulite to ‘wet’ eclogite. Fluid infiltration resulted in re-equilibration at eclogite-facies conditions, indicating that the granulitic protolith was out of equilibrium, but unable to adjust to changing P–T conditions. The transformation occurred in three steps: (1) initial hydration along plagioclase grain boundaries, (2) complete breakdown of plagioclase and hydration along phase boundaries between plagioclase and garnet/clinopyroxene, and (3) re-equilibration of the rock to an eclogite-facies mineral assemblage. Thermodynamic modelling of local compositions reveals that this reaction sequence is proportional to the local decrease of the Gibbs free energy calculated for ‘dry’ and ‘wet’ cases. These energy differences result in increased net reaction rates and the reactions that result in the largest decrease of the Gibbs free energy occur first. In addition, these reactions result in a local volume decrease leading to porosity formation; i.e., pathways for new fluid to enter the reaction site thus controlling net fluid flow. Element transport to and from the reaction sites only occurs if it is energetically beneficial, and enough transport agent is available. Reactive fluid flow during static re-equilibration of nominally impermeable rocks is thus guided by differences in the energy budget of the local equilibrium domains.
View lessSteller’s sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller’s descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller’s sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller’s sea cows’ reportedly bark-like skin. We also found that Steller’s sea cows’ abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.
View lessWe present a phylogenetic analysis using plastid (matK, rbcL) and nuclear (nrITS) DNA for diverse Euploca spp. (formerly Heliotropium section Orthostachys) from the worldwide distribution of a genus and including species encompassing the wide physiological and morphological diversity of the genus. Our results indicate that some remarkably complex features arose multiple times in parallel in Euploca, including attributes of its subsections under section Orthostachys, notably plants that, above ground, consist almost entirely of inflorescences. To elucidate in greater detail the distribution of C4 species in Euploca and Heliotropium s.s., we made > 800 δ 13C determinations, including some from the traditional genus Tournefortia. We greatly increase the number of proven C4 species in Euploca, but found none outside Euploca. Of the tested Euploca spp., c. 28% are C3 or intermediate in carbon fixation pathway. Our phylogenetic results indicate four parallel/convergent acquisitions of C4 photosynthesis or fewer origins with subsequent loss in some species.
View lessCarbohydrate-protein interactions are key for cell-cell and host-pathogen recognition and thus, emerged as viable therapeutic targets. However, their hydrophilic nature poses major limitations to the conventional development of drug-like inhibitors. To address this shortcoming, four fragment libraries were screened to identify metal-binding pharmacophores (MBPs) as novel scaffolds for inhibition of Ca2+-dependent carbohydrate-protein interactions. Here, we show the effect of MBPs on the clinically relevant lectins DC-SIGN, Langerin, LecA and LecB. Detailed structural and biochemical investigations revealed the specificity of MBPs for different Ca2+-dependent lectins. Exploring the structure-activity relationships of several fragments uncovered the functional groups in the MBPs suitable for modification to further improve lectin binding and selectivity. Selected inhibitors bound efficiently to DC-SIGN-expressing cells. Altogether, the discovery of MBPs as a promising class of Ca2+-dependent lectin inhibitors creates a foundation for fragment-based ligand design for future drug discovery campaigns.
View lessDNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.
View lessSpin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ−Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully determined by the relaxation of the electrons in the metal layer, and provides a rough estimate of the spin-mixing conductance of the GIG/Pt and γ−Fe2O3/Pt interfaces. Remarkably, in the half-metallic ferrimagnet Fe3O4 (magnetite), our measurements reveal two spin-current components with opposite direction. The slower, positive component exhibits SSE dynamics and is assigned to torque-type magnon excitation of the A- and B-spin sublattices of Fe3O4. The faster, negative component arises from the pyrospintronic effect and can consistently be assigned to ultrafast demagnetization of minority-spin hopping electrons. This observation supports the magneto-electronic model of Fe3O4. In general, our results provide a route to the contact-free separation of torque- and conduction-electron-mediated spin currents.
View lessIn recent years, femtosecond extreme-ultraviolet (XUV) and x-ray pulses from free-electron lasers have developed into important probes to monitor processes and dynamics in matter on femtosecond-time and angstrom-length scales. With the rapid progress of versatile ultrafast x-ray spectroscopy techniques and more sophisticated data analysis tools, accurate single-pulse information on the arrival time, duration, and shape of the probing x-ray and XUV pulses becomes essential. Here, we demonstrate that XUV pulses can be converted into terahertz electromagnetic pulses using a spintronic terahertz emitter. We observe that the duration, arrival time, and energy of each individual XUV pulse is encoded in the waveform of the associated terahertz pulses, and thus can be readily deduced from single-shot terahertz time-domain detection.
View lessPhotonics is a promising platform for demonstrating a quantum computational advantage (QCA) by outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing proposals and demonstrations face challenges. Experimentally, current implementations of Gaussian boson sampling (GBS) lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make progress in improving both the theoretical evidence and experimental prospects. We provide evidence for the hardness of GBS, comparable to the strongest theoretical proposals for QCA. We also propose a QCA architecture we call high-dimensional GBS, which is programmable and can be implemented with low loss using few optical components. We show that particular algorithms for simulating GBS are outperformed by high-dimensional GBS experiments at modest system sizes. This work thus opens the path to demonstrating QCA with programmable photonic processors.
View lessHumans are unconditionally confronted with social expectations and norms, up to a degree that they, or some of them, have a hard time recognizing what they actually want. This renders them susceptible for introjection, that is, to unwittingly or “unconsciously” mistake social expectations for self-chosen goals. Such introjections compromise an individual’s autonomy and mental health and have been shown to be more prevalent in individuals with rumination tendencies and low emotional self-awareness. In this brain imaging study, we draw on a source memory task and found that introjections, as indicated by imposed tasks that are falsely recognized as self-chosen, involved the bilateral medial prefrontal cortex (MPFC) and the dorsal anterior cingulate cortex (ACC). Notably, reduced right MPFC activation within this condition correlated with trait scores of ruminations and reduced emotional self-awareness, but also introversion. Moreover, correct recognition of tasks as self-chosen involved the right MPFC. Accordingly, the right MPFC may play a role in supporting the maintenance of psychological autonomy and counteract introjection, which individuals with certain personality traits seem to be prone to. This research has significant implications for the study of mechanisms underlying autonomous motivation, goal and norm internalization, decision-making, persuasion, education, and clinical conditions such as depression and burnout.
View lessThe Palaeocene-Eocene Thermal Maximum (ca. 56 million years ago) offers a primary analogue for future global warming and carbon cycle recovery. Yet, where and how massive carbon emissions were mitigated during this climate warming event remains largely unknown. Here we show that organic carbon burial in the vast epicontinental seaways that extended over Eurasia provided a major carbon sink during the Palaeocene-Eocene Thermal Maximum. We coupled new and existing stratigraphic analyses to a detailed paleogeographic framework and using spatiotemporal interpolation calculated ca. 720–1300 Gt organic carbon excess burial, focused in the eastern parts of the Eurasian epicontinental seaways. A much larger amount (2160–3900 Gt C, and when accounting for the increase in inundated shelf area 7400–10300 Gt C) could have been sequestered in similar environments globally. With the disappearance of most epicontinental seas since the Oligocene-Miocene, an effective negative carbon cycle feedback also disappeared making the modern carbon cycle critically dependent on the slower silicate weathering feedback.
View lessArctic river deltas and deltaic near-shore zones represent important land–ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments as well as assess impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow, and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75 000 locations from large-scale (1:25 000–1:500 000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in northeastern Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta and gulf regions in 50 and 200 m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r>0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic–ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean, but they may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modeling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository for the Lena Delta (https://doi.org/10.1594/PANGAEA.934045; Fuchs et al., 2021a) and Kolyma Gulf region (https://doi.org/10.1594/PANGAEA.934049; Fuchs et al., 2021b), respectively. Likewise, the depth validation data are available on PANGAEA as well (https://doi.org/10.1594/PANGAEA.933187; Fuchs et al., 2021c).
View lessLC–MS is one of the most important tools for the comprehensive characterization of N-glycans. Despite many efforts to speed up glycan analysis via optimized sample preparation (e.g., faster enzyme digestion in combination with instant or rapid labeling dyes), a major bottleneck remains the rather long measurement times of HILIC chromatography. Further complication arises from the necessity to concomitantly calibrate with an external standard to allow for accurate retention times and the conversion into more robust GU values. Here we demonstrate the use of an internal calibration strategy for HILIC chromatography to speed up glycan analysis. By reducing the number of utilized dextran oligosaccharides, the calibrant can be spiked directly into the sample such that external calibration runs are no longer required. The minimized dextran ladder shows accurate GU calibration with a minor deviation of well below 1% and can be applied without modifications in sample preparation or data processing. We further demonstrate the simultaneous use of the minimized dextran ladder as calibrant for the estimation of CCS values in traveling wave ion mobility spectrometry. In both cases, the minimized dextran ladder enables the measurement of calibrant and sample in a single HPLC run without losing information or accuracy.
View lessDer digitale Wandel hat öffentliche Beobachtungs- und Beeinflussungsbeziehungen grundlegend verändert. In den traditionellen Massenmedien vermittelt der professionelle Journalismus zwischen Quellen und Publikum und trifft alleine Publikationsentscheidungen. Im Internet wird dieses Gatekeeper-Paradigma teilweise durch ein auf Plattformen gestütztes Netzwerk-Paradigma ersetzt, in dem Konstellationen vielfältiger, dynamischer und häufig auch unvermittelt sind. Diskutiert wird die Rolle vermittelnder Dritter in Akteurskonstellationen sowie in intra- und intersystemischen Beziehungen. Dabei wird in zweifacher Weise an Georg Simmel angeknüpft: Soziale Formen oder Interaktionsmodi helfen, die Dynamik zwischen Akteuren zu systematisieren. Zudem wurde Simmels Hinweis auf den vermittelnden Dritten aufgegriffen. Im Netzwerk-Paradigma umfasst die Vermittlung neben der Nachrichtenversorgung zusätzlich Moderation und Navigation. Zahlreiche Krisensymptome der digitalen Öffentlichkeit werfen die Frage nach dem Reformbedarf für Journalismus und Plattformen auf.
View lessIn metacommunity ecology, a major focus has been on combining observational and analytical approaches to identify the role of critical assembly processes, such as dispersal limitation and environmental filtering, but this work has largely ignored temporal community dynamics. Here, we develop a “virtual ecologist” approach to evaluate assembly processes by simulating metacommunities varying in three main processes: density-independent responses to abiotic conditions, density-dependent biotic interactions, and dispersal. We then calculate a number of commonly used summary statistics of community structure in space and time and use random forests to evaluate their utility for inferring the strength of these three processes. We find that (i) both spatial and temporal data are necessary to disentangle metacommunity processes based on the summary statistics we test, and including statistics that are measured through time increases the explanatory power of random forests by up to 59% compared to cases where only spatial variation is considered; (ii) the three studied processes can be distinguished with different descriptors; and (iii) each summary statistic is differently sensitive to temporal and spatial sampling effort. Including repeated observations of metacommunities over time was essential for inferring the metacommunity processes, particularly dispersal. Some of the most useful statistics include the coefficient of variation of species abundances through time and metrics that incorporate variation in the relative abundances (evenness) of species. We conclude that a combination of methods and summary statistics is probably necessary to understand the processes that underlie metacommunity assembly through space and time, but we recognize that these results will be modified when other processes or summary statistics are used.
View lessLaser-induced forward transfer (LIFT) is a rapid laser-patterning technique for high-throughput combinatorial synthesis directly on glass slides. A lack of automation and precision limits LIFT applications to simple proof-of-concept syntheses of fewer than 100 compounds. Here, an automated synthesis instrument is reported that combines laser transfer and robotics for parallel synthesis in a microarray format with up to 10 000 individual reactions cm−2. An optimized pipeline for amide bond formation is the basis for preparing complex peptide microarrays with thousands of different sequences in high yield with high reproducibility. The resulting peptide arrays are of higher quality than commercial peptide arrays. More than 4800 15-residue peptides resembling the entire Ebola virus proteome on a microarray are synthesized to study the antibody response of an Ebola virus infection survivor. Known and unknown epitopes that serve now as a basis for Ebola diagnostic development are identified. The versatility and precision of the synthesizer is demonstrated by in situ synthesis of fluorescent molecules via Schiff base reaction and multi-step patterning of precisely definable amounts of fluorophores. This automated laser transfer synthesis approach opens new avenues for high-throughput chemical synthesis and biological screening.
View lessAims/hypothesis
It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the offspring’s phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS deficiency.
Methods
Heterozygous (+/−) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice. The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type parents.
Results
Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose and liver glycogen storage were increased when analysing wild-type male and female offspring of +/− eNOS fathers. Wild-type male but not female offspring of +/− eNOS fathers had increased fasting insulin and increased insulin after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/− eNOS fathers. The endocrine pancreas in wild-type offspring was not affected.
Conclusions/interpretation
Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/− eNOS fathers developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and Pgc1a gene expression due to altered methylation of these genes.
View lessCommunity composition in a given landscape is a complex product of the constituent species' niche requirements, geographic connectivity, environmental properties, species interactions and drift. In this study, we examined niche use of 16 cladoceran species in 81 zooplankton communities that inhabit environmentally variable sites along a strong urbanization gradient. We tested to what extent niche shifts occurred along the urbanization gradient. We also quantified to what extent niche overlap can explain co-occurrence patterns and tested whether alternative processes such as dispersal limitation or environmental heterogeneity impact co-occurrence patterns. Niche use in the study region was size-mediated, with larger species preferring nutrient-rich environments while smaller species were more specialized on distinct niche axes. Our analyses also revealed that mainly generalist species were able to establish in urban sites. While the average niche position for most species was conserved from rural to urban sites, the niches of those species occurring in both rural and urban areas remain partly unfilled in the urban populations. We observed that a relatively small proportion (13%) of species pairs co-occurred more or less often than expected by chance, but also that niche overlap was the only predictor that was strongly and significantly associated with co-occurrence scores in our study. While most of these species pairs showed evidence for a role of environmental filtering, a few common, generalist species pairs displayed segregated co-occurrence patterns and high niche overlap, suggesting a role of limiting similarity relationships as well. Our study highlights the damaging effects on biodiversity of urbanization through biotic homogenization benefitting generalist species, as well as the difficulty species may face in occupying available niche space in urbanized habitats.
View lessIm Zuge der zunehmenden Digitalisierung gewinnen interorganisationale Netzwerke, Plattformen und Ökosysteme zunehmend an Bedeutung. Jedoch bleibt oft unklar, was mit diesen Konzepten gemeint ist und in welchem Verhältnis sie zueinander stehen. Dieser Beitrag hat daher das Ziel, diese Konzepte genauer zu fassen und die jeweiligen Verhältnisse zueinander zu klären. Dies geschieht mithilfe der in der Organisationsforschung prominenten Praxis- und Institutionentheorie. Anhand der Dimensionen theoretische Wurzeln, zentrale Analyseebenen, Ziele, Governance/Steuerung, Dynamiken und Grenzen, Kooperation und Wettbewerb sowie Offenheit/Selektion von Mitgliedern werden die einzelnen Phänomene voneinander abgrenzt. Zudem werden die dyadischen und das triadische Verhältnis zueinander diskutiert und weitere Forschungsperspektiven aufgezeigt.
View less