We consider a disordered Hubbard model and show that, at sufficiently weak disorder, a single spin-down mobile impurity can thermalize an extensive initially localized system of spin-up particles. Thermalization is enabled by resonant processes that involve correlated hops of the impurity and localized particles. This effect indicates that Anderson localized insulators behave as “supercooled” systems, with mobile impurities acting as ergodic seeds. We provide analytical estimates, supported by numerical exact diagonalization, showing how the critical disorder strength for such mechanism depends on the particle density of the localized system. In the U→∞ limit, doublons are stable excitations, and they can thermalize mesoscopic systems by a similar mechanism. The emergence of an additional conservation law leads to an eventual localization of doublons. Our predictions apply to fermionic and bosonic systems and are readily accessible in ongoing experiments simulating synthetic quantum lattices with tunable disorder.