The combination of strong few-cycle laser pulses with a reaction microscope, a spectrometer capable of detecting the momentum-vectors of all charged particles that emerge from ionization or dissociation processes in coincidence, enables precise and detailed investigations of strong field processes that occur in atoms and small molecules. However, to avoid false coincidences, experiments with a reaction microscope rely on a low ratio between event rate and laser rate. Common repetition rates of strong few cycle laser systems are on the order of a few kHz leading to long measurement duration up to several days to get reliable information e.g. on angular and energy resolved data. If, in addition, laser parameters such as pump probe delay or polarization have to be scanned, the duration for such experimental runs can extend even beyond this time scale. For such long time periods it is very difficult to maintain stable experimental conditions. Hence, the possibility to scan through large parameter sets is very limited. To overcome this limitation, we combined a reaction microscope with a 400 kHz high repetition rate NOPA-system delivering strong few-cycle laser pulses to study multi-electron dynamics in strong field ionization experiments. First measurements on strong field ionization of argon were performed to characterize the setup. In these experiments unexpected sharp structures have been observed in the electron momentum distributions. With the help of TDSE (Time Dependent Schrödinger Equation) calculations, it was found that these sharp structures originate from the temporal shape of the laser pulses which contains weak post pulses. In this 'unwanted' pump probe scheme, the strong main pulse not only ionizes the argon atom but also populates Rydberg states in the neutral atom. A weaker post pulse ionizes the Rydberg states. This leads to interferences between the direct and the indirect created photo electrons and thus to sharp structures in the electron spectra. The TDSE calculation has shown that the relative population and initial phases of Rydberg states populated by the strong field interaction can be extracted when studying the time dependence of these interferences in a pump probe experiment.
Die Kombination starker kurzer Laserimpulse von wenigen Zyklen mit einem Reaktionsmikroskops, welches die Impulsvektoren aller geladenen Teilchen, die aus einem Ionisations- oder Dissoziationsprozess stammen, koinzident detektieren kann, ermöglicht eine genaue und detaillierte Untersuchung von atomaren und molekularen Starkfeldprozessen. Experimente mit Reaktionsmikroskopen bedürfen jedoch eines niedrigen Verhältnisses zwischen Ereignisrate und Laserrate, um falsche Koinzidenzen zu vermeiden. Gewöhnliche Wiederholraten von Lasersystemen, die starke Laserimpulse mit wenigen Zyklen erzeugen, sind in der Größenordnung weniger kHz. Dies führt zur Messdauern von bis zu einigen Tagen für verlässliche Informationen über z.B. winkel- und energieaufgelöste Daten. Falls zusätzlich noch Laserparameter wie Polarisation oder der zeitliche Abstande zweier Laserimpulse variiert werden soll, kann die Dauer eines solchen Experimentes sogar noch größere Zeitskalen erreichen. Es ist sehr schwierig Experimente auf diesen Zeitskalen stabil zu halten. Deshalb sind die Möglichkeiten große Parameterräume zu durchsuchen stark eingeschränkt. Wir haben ein Reaktionsmikroskop mit einem NOPA-System kombiniert, das starke, kurze Laserimpulse von wenigen Zyklen mit einer Wiederholrate von 400 kHz erzeugt, um diese Einschränkung zu überwinden und Mehrelektronendynamiken in Starkfeldexperimenten zu untersuchen. Es wurden erste Experimente mit Starkfeldionisation an Argon durchgeführt, um den experimentellen Aufbau zu charakterisieren. Die Impulsverteilungen der Elektronen aus diesen Experimenten zeigten unerwartet scharfe Strukturen. TDSE (Time Dependent Schrödinger Equation) Berechnungen zeigten, dass diese Strukturen durch die zeitliche Form des Laserimpulses, der schwache Satellitenimpulse enthält, verursacht wurden. In diesem ungewollten pump-probe Schema ionisiert der starke Hauptimpuls nicht nur das Argonatom, sondern er bevölkert auch gleichzeitig Rydbergzustände des neutralen Atoms. Die Rydbergzustände werden durch einen späteren schwächeren Impuls ionisiert. Dies führt zu Interferenzen zwischen den direkt und indirekt erzeugten Photoelektronen sichtbar als scharfe Strukturen in den Elektronenspektren. Zusätzlich zeigte die TDSE-Berechnung, dass die relative Population und die initialen Phasen der Rydbergzustände, die durch die Starkfeldinteraktion bevölkert werden, aus den Photoelektronenspektren extrahiert werden können, wenn die Zeitabhängigkeit dieser Interferenzen durch ein Pump-Probe-Experiment untersucht wird. In einem anderen Starkfeldexperiment an mehratomigen Molekülen wie Butadien und n-Butan untersuchten wir deren Fragmentation. Es wurden winkelaufgelösten Photoelektronenspektren für unterschiedliche Fragmentationskanäle aufgenommen. Diese Messungen zeigten, dass unterschiedliche ionische Zustände während einer Starkfeldionisation bevölkert werden. Dies deutet daraufhin, dass in mehratomigen Molekülen nicht nur das am schwächsten gebundene Elektron in Starkfeldionisationsprozessen teilnimmt.