Haupttitel:
Existence, regularity, and a strong Itô formula for the isochronal phase of SPDE
Autor*in:
Adams, Zachary P.
Datum der Freigabe:
2024-11-05T13:15:20Z
Abstract:
We prove the existence and regularity of the isochron map for stable invariant manifolds of a large class of evolution equations. Our results apply in particular to the isochron map of reaction-diffusion equations and neural field equations. Using the regularity properties proven here, we prove a strong Itô formula for the isochronal phase of stochastically perturbed travelling waves and other patterns appearing in SPDEs driven by white noise, even for SPDEs that only admit mild solutions.
Teil des Identifiers:
e-ISSN (online): 1083-589X
Freie Schlagwörter:
invariant manifold
isochronal phase
neural field equations
Reaction-diffusion equations
spiral waves
strong Itô formula
Travelling waves
DDC-Klassifikation:
510 Mathematik
Publikationstyp:
Wissenschaftlicher Artikel
Zeitschrift:
Electronic Communications in Probability
Fachbereich/Einrichtung:
Mathematik und Informatik
Institut für Mathematik