dc.contributor.author
Adams, Zachary P.
dc.date.accessioned
2024-11-05T13:15:20Z
dc.date.available
2024-11-05T13:15:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45516
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45228
dc.description.abstract
We prove the existence and regularity of the isochron map for stable invariant manifolds of a large class of evolution equations. Our results apply in particular to the isochron map of reaction-diffusion equations and neural field equations. Using the regularity properties proven here, we prove a strong Itô formula for the isochronal phase of stochastically perturbed travelling waves and other patterns appearing in SPDEs driven by white noise, even for SPDEs that only admit mild solutions.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
invariant manifold
en
dc.subject
isochronal phase
en
dc.subject
neural field equations
en
dc.subject
Reaction-diffusion equations
en
dc.subject
spiral waves
en
dc.subject
strong Itô formula
en
dc.subject
Travelling waves
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Existence, regularity, and a strong Itô formula for the isochronal phase of SPDE
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
56
dcterms.bibliographicCitation.doi
10.1214/24-ECP624
dcterms.bibliographicCitation.journaltitle
Electronic Communications in Probability
dcterms.bibliographicCitation.volume
29
dcterms.bibliographicCitation.url
https://doi.org/10.1214/24-ECP624
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1083-589X
refubium.resourceType.provider
WoS-Alert