Haupttitel:
Strichartz inequalities with white noise potential on compact surfaces
Autor*in:
Mouzard, Antoine; Zachhuber, Immanuel
Datum der Freigabe:
2024-06-20T07:51:16Z
Abstract:
We prove Strichartz inequalities for the Schrödinger equation and the wave equation with multiplicative noise on a two-dimensional manifold. This relies on the Anderson Hamiltonian described using high-order paracontrolled calculus. As an application, it gives a low-regularity solution theory for the associated nonlinear equations.
Teil des Identifiers:
e-ISSN (online): 1948-206X
Freie Schlagwörter:
Anderson Hamiltonian
paracontrolled calculus
white noise
Schrödinger operator
Strichartz inequalities
DDC-Klassifikation:
510 Mathematik
Publikationstyp:
Wissenschaftlicher Artikel
Zeitschrift:
Analysis & PDE
Fachbereich/Einrichtung:
Mathematik und Informatik
Institut für Mathematik