dc.contributor.author
Mouzard, Antoine
dc.contributor.author
Zachhuber, Immanuel
dc.date.accessioned
2024-06-20T07:51:16Z
dc.date.available
2024-06-20T07:51:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43891
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43601
dc.description.abstract
We prove Strichartz inequalities for the Schrödinger equation and the wave equation with multiplicative noise on a two-dimensional manifold. This relies on the Anderson Hamiltonian described using high-order paracontrolled calculus. As an application, it gives a low-regularity solution theory for the associated nonlinear equations.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Anderson Hamiltonian
en
dc.subject
paracontrolled calculus
en
dc.subject
Schrödinger operator
en
dc.subject
Strichartz inequalities
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Strichartz inequalities with white noise potential on compact surfaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.2140/apde.2024.17.421
dcterms.bibliographicCitation.journaltitle
Analysis & PDE
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
17
dcterms.bibliographicCitation.url
https://doi.org/10.2140/apde.2024.17.421
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1948-206X
refubium.resourceType.provider
WoS-Alert