dc.contributor.author
Zhu, Guo-Yi
dc.contributor.author
Chen, Ji-Yao
dc.contributor.author
Ye, Peng
dc.contributor.author
Trebst, Simon
dc.date.accessioned
2024-03-27T12:57:21Z
dc.date.available
2024-03-27T12:57:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42707
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42427
dc.description.abstract
Gapped fracton phases of matter generalize the concept of topological order and broaden our fundamental understanding of entanglement in quantum many-body systems. However, their analytical or numerical description beyond exactly solvable models remains a formidable challenge. Here we employ an exact 3D quantum tensor-network approach that allows us to study a ZN generalization of the prototypical X cube fracton model and its quantum phase transitions between distinct topological states via fully tractable wave function deformations. We map the (deformed) quantum states exactly to a combination of a classical lattice gauge theory and a plaquette clock model, and employ numerical techniques to calculate various entanglement order parameters. For the ZN model we find a family of (weakly) first-order fracton confinement transitions that in the limit of N→∞ converge to a continuous phase transition beyond the Landau-Ginzburg-Wilson paradigm. We also discover a line of 3D conformal quantum critical points (with critical magnetic flux loop fluctuations) which, in the N→∞ limit, appears to coexist with a gapless deconfined fracton state.
en
dc.format.extent
19 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Gauge theories
en
dc.subject
Geometric & topological phases
en
dc.subject
Quantum phase transitions
en
dc.subject
Topological order
en
dc.subject
Topological phases of matter
en
dc.subject
Topological materials
en
dc.subject
Projected entangled pair states
en
dc.subject
Tensor network methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Topological Fracton Quantum Phase Transitions by Tuning Exact Tensor Network States
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97424
dcterms.bibliographicCitation.articlenumber
216704
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.130.216704
dcterms.bibliographicCitation.journaltitle
Physical Review Letters
dcterms.bibliographicCitation.number
21
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
130 (2023)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevLett.130.216704
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007
dcterms.isPartOf.eissn
1079-7114