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Gapped fracton phases of matter generalize the concept of topological order and broaden our fundamental
understanding of entanglement in quantum many-body systems. However, their analytical or numerical descrip-
tion beyond exactly solvable models remains a formidable challenge. Here we employ an exact 3D quantum
tensor network approach that allows us to study a ZN generalization of the prototypical X cube fracton model
and its quantum phase transitions between distinct topological states via fully tractable wave function deforma-
tions. We map the (deformed) quantum states exactly to a combination of a classical lattice gauge theory and
a plaquette clock model, and employ numerical techniques to calculate various entanglement order parameters.
For the ZN model we find a family of (weakly) first-order fracton confinement transitions that in the limit of
N → ∞ converge to a continuous phase transition beyond the Landau-Ginzburg-Wilson paradigm. We also
discover a line of 3D conformal quantum critical points (with critical magnetic flux loop fluctuations) which, in
the N →∞ limit, appears to coexist with a gapless deconfined fracton state.

Quantum states with intrinsic topological order distinguish
themselves through long-range entanglement [1], quasiparti-
cle excitations with exotic statistics [2], and their applicability
as quantum memories [3]. Such states have been widely stud-
ied in two spatial dimensions (2D), e.g. as ground states of
the toric code (TC) [3], which has also allowed for recent ex-
perimental realizations engineered in state-of-the-art quantum
simulators [4, 5]. Exploring such states in three-dimensional
(3D) settings has given rise to the family of fracton topologi-
cal orders [6–9] with strictly immobile excitations, the epony-
mous fractons, which have ignited interest not only in the
fields of quantum information and quantum matter but also
elasticity and gravity [10, 11]. The simplest exactly solv-
able fracton model is the X cube (XC) [9] where the mobility
constraint is deeply rooted in the absence of string operators
[7]. The ground states of the XC span a degenerate manifold
which is insensitive to local perturbations and whose peculiar
subextensivity can be traced back to an intimate connection
to 2D topological order via a coupled-layer-construction [12–
19]. Like the TC which is equivalent to a Z2 lattice gauge the-
ory [3], the XC can be viewed as a generalized lattice gauge
theory coupled to Z2 matter with certain subsystem symme-
tries [9]; in the long wave-length limit, it is equivalent to an
off-diagonal U(1) tensor gauge theory that is turned massive
via a Higgs mechanism [20–24] and where the matter charge
has conserved higher moments [25–33].

Despite this impressive understanding of fracton physics,
there are still a number of unresolved questions. One is the
principal nature of quantum phase transitions (QPTs) involv-
ing fracton topological phases, which due to their nonlocal
structure have to go beyond the traditional Landau-Ginzburg-
Wilson paradigm. Although there have been analytical at-
tempts based on Hamiltonian duality, series expansions or
phenomenological field theories [13, 34–40], a direct micro-
scopic investigation, e.g., by considering deformations of ex-

actly solvable Hamiltonians as for their 2D counterparts, has
remained largely out of scope of current approaches.

Here we follow a different route and study wave function
deformations that allow us to move from the exactly known
ground states of certain fracton models through QPTs to topo-
logically trivial states devoid of any fractons. Such paths dif-
fer from the conventional Hamiltonian deformations by space-
time anisotropy and could yield space-conformal quantum
critical points [41]. In doing so, we employ tensor network
(TN) wave functions that allow us to exactly tune these quan-
tum states along a chosen path – an approach previously em-
ployed in the context of 2D topological order [41–50]. For the
3D fracton order of interest here, we identify QPTs along the
path by numerical TN calculations that are based on an an-
alytical quantum-classical mapping and allow us to calculate
various entanglement order parameters [44, 45, 48, 51–55] as
diagnostics. For the ZN generalized XC fracton model our
main findings can be concentrated around a line of 3D space-
conformal deconfined quantum critical points, where the de-
confined fractons are connected by critical fluctuating strings.
In one direction, the string can either condense resulting in a
gapped ZN fracton phase, or confine a pair of fractons into a
fracton dipole thereby falling into the stacked 2D TCs phase;
in the other direction, monopole proliferation leads to a com-
plete fracton confinement in a weak first-order transition that
turns continuous in the unHiggsed N →∞ limit.

Parent wave function.– Our starting point is the observa-
tion that stacked intersecting 2D TCs can act as a parent
for realizing both the XC and 3D TC models through con-
densing its elementary excitations – magnetic flux loops or
monopoles [12, 13, 34, 56]. In terms of wave functions, this
motivates us to adopt the ground state of the stacked 2D TCs
as a parent wave function and study its deformations that will
pass through QPTs to either the XC or 3D TC ground states,
as illustrated in Fig. 1. At the fixed point the wave function is
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FIG. 1. Phase diagram of tuning the exact quantum TN state
between the stacked 2D toric codes, 3D toric code, X cube, and the
trivial paramagnet (PM) for ZN gauge group. The TN states are illus-
trated in dual cubes, where the black dots denote the virtual variables
and the red (green) arrow denotes physical spin σz(µz), satisfying
µz = ωn1−n2−n3+n4 , σz = ωn4−n3 . The classical TNs lying at the
QPTs show the wave function norm.

a stack of dual 2D Ising quantum paramagnets [3]

∣ψ0⟩ =∑
{s}
∣Zp∩q = spsq⟩ , (1)

where the Pauli z matrix Z for the physical spin on a link
l = p ∩ q can be recast as the domain wall between classi-
cal Ising spins s = ±1 on the two adjacent plaquettes p, q in
the same plane. On every link this results in two spins from
two intersecting planes. Now let us rotate the local basis into
µz
l ≡ Zl1Zl2 , µ

x
l ≡ Xl2 , σ

x
l ≡ Xl1Xl2 , σ

z
l ≡ Zl1 , where l1, l2

lie in xz(yx)(zy) and xy(yz)(zx) planes, respectively (see
Supplemental Material (SM) [57]). The ground state fulfills

∏
l∈B

µz
l = 1, ∏

l∈ �
σx
l = 1 (2)

for every vertex B and cube �, respectively. These are the
Gauss laws for the 3D vector and tensor gauge theories, re-
spectively, which makes it natural to interpret the subsystem
{µz} as the 3D TC [58], while {σx} as the XC [9, 20, 21].
The parent state ∣ψ0⟩ is free of charge, while any violations of
Eq. (2) define the boson (e) and fracton (f ) charge excitations.
The magnetic flux loop (m-loop) is composed of a loop of m-
particles that penetrate plaquettes with ∏l∈◻ µ

x
l = −1 [58],

while the magnetic monopole is defined on the site satisfy-
ing ∏l∈+ σ

z
l = −1 for inplane vertices + [9]. Notice that the

monopoles in the XC subsystem are entangled with the pro-
liferating electric string turning points of the TC subsystem.
Thus if either one subsystem is traced out, one would get a
mixed state with m-loops or monopole excitations [57].

To explore the QPTs induced by condensing these ele-
mentary excitations, we add fluctuations of the m-loop and
monopoles by a local nonunitary deformation [59]

∣ψ(t, h)⟩ = exp(1
2
∑
l

hµz
l + tσx

l ) ∣ψ0⟩ . (3)

Here hµz fluctuates m-loops and adds electric string tension
to confine the boson charge, distilling the XC state from ∣ψ0⟩,
which in the h → ∞, t = 0 limit turns into the exactly solv-
able XC TN state as a cuboid condensate [57, 60, 61]. tσx

fluctuates the monopole (lineon) and turns on electric mem-
brane tension to confine the fracton, distilling the 3D TC out
of ∣ψ0⟩ as a loop condensate. Such deformations can be cap-
tured by an exact, frustration-free Rokhsar-Kivelson Hamilto-
nian, which in the perturbative limit is equivalent to turning
on magnetic fields along µz and σx [57]. In our numerical
analysis, we express the state (3) as a 3D projected entangled
paired state (PEPS) with finite bond dimension (see Fig. 1).

Quantum classical correspondence.– The TN wave func-
tions (3) can be mapped onto effectively classical models by
defining ⟨ψ∣ψ⟩ as a partition function [41, 48, 62, 63] over the
ensemble of the virtual TN variables. We find analytically that
this partition function factorizes into

⟨ψ∣ψ⟩ =∑
{s}
e−ϵg ×∑

{τ}
e−ϵp , (4)

where the two terms

ϵg = − h∑
□

, ϵp = − t′ ∑
□

s
ss

s

τ

τ

τ

τ (5)

are precisely the cubic lattice variants of the classical Z2

gauge [64] and plaquette [65–67] models, describing the (fluc-
tuating) loop gas and fracton matter, respectively. Here s cre-
ates the m-particle [48], while τ measures the fractons in the
dual lattice [57]. For the latter, the parameter t′ ≡ 1

2
ln coth t

is obtained via a Kramers-Wannier relation [68]. An immedi-
ate consequence of this factorization is that the phase diagram
in Fig. 1 is controlled by two independent QPTs, tuned by h
and t respectively. The physical origin is that the m-loops
and the monopoles have trivial mutual statistics and can thus
condense simultaneously. The classical TNs for ϵg and ϵp can
both be equivalently generated, through cube-vertex duality,
by a rank-6 tensor (Fig. 1, top right) where the tensor bond
takes the plaquette variable W◻ = ∏l∈◻ sl or W ′

◻ = ∏j∈◻ τj .
To contract the TNs ⟨ψ∣ψ⟩, we employ the variational in-
finite projected-entangled-paired-state(iPEPS) method to get
the dominant boundary fixed point [69–74] (see SM). As in
general PEPS, the virtual variables serve as the entanglement
degrees of freedom that are responsible for stretching out the
long range entanglement [42, 44, 45, 48, 51]. This allows us
to set up a dictionary between the quantum correlation and the
classical correlations as in Table I. We elucidate the nature of
the two QPTs in the following.

m-loop condensation.– This QPT is captured by the classi-
cal vector gauge model. A classical Wilson loop around an
arbitrary membrane M excites an m-loop excitation above
the ground state, which we denote as ∣∏p∈∂M mp⟩. Conse-
quently, the condensate fraction of m-loops can be measured
by its overlap with the ground state

⟨ψ∣ ∏
p∈∂M

mp⟩ = ⟨ ∏
p∈∂M

sp⟩ = ⟨∏
◻∈M

W◻⟩ ≡ e−∣M ∣/ξ
2
m , (6)



3

TABLE I. Quantum classical correspondence between wave func-
tion and statistical model.

Quantum toric code Tensor network Classical gauge

µz Z◻ W◻
⟨e∣e⟩ X◻ ’t Hooft string

⟨ψ∣∏p∈∂M mp⟩ ∏◻∈M Z◻ Wilson loop

Quantum fracton Tensor network Classical plaquette

Quadrupole Z◻ W ′
◻

⟨ψ∣monopole⟩ X◻ Twist defect
∥∣∏j∈∂∂M fj⟩∥

2 ∏◻∈M Z◻ ∏j∈∂∂M τj
− ln⟨ψ∣ψ⟩ − ln tTr∏j T̂ (j) Free energy

where ∣M ∣ denotes the area of M , and ξm defines the m-loop
condensation length scale beyond which larger loops are or-
thogonal to the ground state. In the TN representation it is
a membrane correlation written as a product of W◻. An X
operator to the virtual variable violates the local Gauss law
and creates an e-particle, equivalent to a semi-infinite ’t Hooft
string in the classical gauge theory, measuring the deconfined
charge amplitude ⟨e∣e⟩. Using Wegner’s Ising-gauge dual-
ity [75], ⟨e∣e⟩ is mapped to the dual Ising order parameter, and
the critical point hc ≈ 0.7614 can be deduced from the known
3D Ising critical temperature 2/ ln cothhc ≈ 4.5115 [76]. In
Fig. 2ab our iPEPS calculation shows that the loop condensa-
tion length scale ξm is finite if h < hc and diverges for h ≥ hc;
near the Ising* critical point it obeys a scaling law with expo-
nent νm = 0.52(2). The critical exponent β for the deconfined
charge amplitude is also close to the Ising order parameter ex-
ponent 0.3295 [76]. Thus the divergence of them-loop fluctu-
ation length and the vanishing of the deconfined boson charge
amplitude signal a continuous phase transition from the 2D
TCs into the XC in the Ising* universality class [77].

Fracton confinement.– This QPT is described by the clas-
sical plaquette model. The model is invariant under planar
subsystem Ising symmetries, which interpolate between the
global and the local gauge symmetry [65–67, 78] and are
spontaneously broken across a first-order transition [68, 79]
at tc ≃ 0.66. For an arbitrary membrane M , the probabil-
ity amplitude for finding fractons at its corners (denoted by
∂∂M ) is measured by the wave function norm

XXXXXXXXXXX

RRRRRRRRRRR
∏

j∈∂∂M
fj⟩
XXXXXXXXXXX

2

= ⟨ ∏
j∈∂∂M

τj⟩ = ⟨∏
◻∈M

W ′
◻⟩ ≡ e−∣M ∣/ξ

2
f , (7)

where fj denotes the fracton, and ξf defines the fracton con-
fining length scale, beyond which the fracton amplitude de-
cays exponentially. 1/ξ2f is analogous to the string tension
in the quark confinement [80]. Moreover, an X operator to
the virtual variable violates the magnetic Gauss law locally
and creates a vector monopole excitation [57], whose expec-
tation value measures the monopole condensate. An indi-
vidual Z operator in the TN evaluates the classical plaquette
operator W ′

◻, which corresponds to the probability of a frac-

2 2.1 2.2 2.3 2.4
0.1

0.15

0.2

0.25

0.3

2 2.1 2.2 2.3 2.4
0

0.1

0.2

0.3

0.4

0.0
5 0.1 0.2

0.2

0.3

0.0
5 0.1 0.2

0.3

0.4

0.75 0.755 0.76 0.765 0.77
0

0.05

0.1

0.75 0.755 0.76 0.765 0.77
0

0.1

0.2

0.3

10
-3

10
-2

0.05

0.1

10
-3

10
-2

0.2

0.3

(a) (b)

(c) (d)

FIG. 2. QPT of m-loop condensation in the ZN model for (a)(b)
N = 2 and (c)(d) N = 5. (a)(c) Inverse of the m-loop condensation
length scale. (b)(d) Deconfined charge amplitude. Insets fit the crit-
ical exponents ξm ∝ ∣hc − h∣−νm and ⟨e∣e⟩ ∝ ∣hc − h∣β . Data are
computed by iPEPS of bond dimension (D = 3, χ = 72) for N = 2
and (D = 2, χ = 80) for N = 5. Dashed vertical line denotes the
critical point hc ≈ 0.7614 for N = 2 and hc ≈ 2.2 for N = 5.

ton quadrupole around an elementary plaquette ∥∣∏j∈◻ fj⟩∥
2
,

which is a composite particle freely mobile in all directions.
As shown in Fig. 3 and the SM, our iPEPS calculations in-
deed confirm the first-order transition across which the frac-
ton confining length jumps from a large value for t < tc to
a finite value when t > tc, accompanied by a jump of the
monopole condensate ⟨ψ∣monopole⟩ from approximately zero
to a finite value. The fracton quadrupole amplitude and the
second Rényi entropy coefficient also exhibit a jump from ap-
proximately 1 to a finite value, and the effective free energy
density as a generating function shows a clearly visible kink
[81]. For t < tc the wave function with isolated fracton ex-
citations and the degenerate ground states on a torus [9, 12]
are renormalizable and well defined. For t > tc, the state with
fractons separated at large distances has exponentially van-
ishing norm and is thus unrenormalizable, which means the
fracton excitations as well as the topological degeneracy are
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FIG. 3. Fracton confinement transition in the ZN model for
N = 24. tc ≈ 1.5788(13). (a) Left axis: inverse fracton-confinement
lengthscale; right axis: monopole condensate fraction. (b) Left axis:
fracton quadrupole amplitude; right axis: logarithm of the wave func-
tion norm mapped to the classical free energy density. Data are com-
puted with iPEPS with bond dimension D = 2, χ = 24.
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fracton confining length ξf for t+c is proportional to N . The jump of
fracton quadrupole amplitude vanishes like 1/N2. Data are com-
puted with bond dimension D = 2 for N = 2, . . . ,15,16,24.

gone in the thermodynamic limit – a hallmark for the break-
down of topological order. While ⟨ψ∣ψ⟩ is interpreted as a
partition function, from ∥∣∏j∈∂∂M fj⟩∥

2 ∝ e−F (M) one may
define a dimensionless free energy F (M) = ∣M ∣/ξ2f which
captures the energetics of a set of fracton excitations lying at
the corners of M . F (M) reflects the underlying entangle-
ment structure of the ground state wave function [44, 45, 51]
, reminiscent of the fact that the dimensionless entanglement
Hamiltonian from a pure ground state can also capture the low
energy behavior of a true physical boundary [82–84].

ZN generalization.– All of the above can be generalized to
the ZN gauge group, which interpolates between Z2 and the
compact U(1) gauge group. Importantly, the factorization (4)
still holds and gives rise to a ZN lattice vector gauge model
and a ZN generalization for the plaquette Ising model with
planar ZN subsystem symmetries [57]. The ZN vector gauge
model [85, 86] on a cubic lattice has been studied by using
Kramers-Wannier duality to map it onto classical clock spin
models exhibiting a single [87] transition depending on N :
for N ≥ 5 it is believed to undergo a continuous phase tran-
sition in the 3D XY universality class [85, 86, 88]. In our
context, this implies that the m-loop condensation transition
of our phase diagram in Fig. 1 persists in the generic ZN sce-
nario (except for N = 3 where the transition at hc becomes
first order). Our iPEPS calculation for the Z5 case in Fig. 2cd
shows that them-loop condensation length and the deconfined
charge order parameter indeed approximately follow the con-
jectured scaling of the 3D XY universality class [89]. For
the fracton confinement transition, on the other hand, our
iPEPS calculations for the plaquette clock model with finite

N = 2,3, . . . ,15,16,24 indicate first-order transitions with fi-
nite jumps similar to the Z2 scenario (see Fig. 3 and SM),
which however become notably weaker with increasing N .
N →∞ limit.– Of particular interest thus is the asymptotic

limit in which ZN approaches the compactU(1) gauge group.
For the vector gauge model, Monte Carlo simulations [85, 86]
found that hc ∝ N2, consistent with the absence of a decon-
fined U(1) vector gauge phase in 3D [90]. For the plaquette
model, we however find that the critical point converges to a
finite value tc → 1.58 (Fig. 4). The inverse fracton confining
length 1/ξf decreases∝ 1/N (for t+c ), and the transition jump
of the quadrupole amplitude vanishes ∝ 1/N2. These nu-
merical observations indicate that the deconfined ZN→∞ XC
fracton phase shrinks to a critical line (hc ∝ N2, t ≤ tc) in
the asymptotic limit.

What is the nature of this critical line? The asymptotic limit
can be described by the unHiggsed U(1) hollow tensor gauge
theory studied in Refs. [20, 22, 24], where the electric field
tensor is purely off diagonal so as to enhance the dipole con-
servation to subsystem charge conservation as an organizing
principle [57]. Also, the classical plaquette model that our
wave function is mapped onto, is equivalent to the classical
field theory predicted for the Rokhsar-Kivelson point [20].
Such a 3D quantum tensor gauge theory is known to be gener-
ally unstable against monopole proliferation [20], which gaps
out a deconfined Coulomb phase, analogous to the instability
of a 2D quantum U(1) vector gauge theory [90]. Neverthe-
less, it does not rule out the possibility that the deconfined
gauge theory can emerge at a critical point, dubbed decon-
fined quantum critical point (DQCP) [91]. What we find here
is a tensor gauge generalization of the vector gauge DQCP
wave function [48], as the unHiggsed fracton phase shrinks to
a line of critical points decorated with critical fluctuating m-
strings that glue pairs of fractons (Fig. 4). As a consequence,
the h perturbation is relevant (in the renormalization group
sense) and confines two fractons into a fracton dipole. The
fracton dipole is adiabatically connected to the deconfined m-
particle in the 2D TCs phase, signalling a partial confinement
from the fracton state. On the other hand, sufficiently strong
t > tc leads to monopole proliferation and confines not only
the fractons but also the fracton dipoles. Notice that the adja-
cent phases of our DQCP do not exhibit spontaneous symme-
try breaking but rather distinct topological orders. It remains
to be understood why the jump of the monopole condensation
order across tc extrapolates to a finite value, which is mapped
to the nonlocal symmetry twist defect in the classical model.

Outlook.– The two phase transition lines cross at a peculiar
multicritical point that can serve as a parent critical state, upon
which any perturbations are relevant and flow to all four pos-
sible topologically distinct states. It is straightforward to gen-
eralize the isotropic deformation to anisotropic deformation,
covering a richer variety of anisotropic subdimensional criti-
calities in Refs. [34, 38, 39]. Our approach, by deforming an
exact tensor network state and mapping to a tunable and com-
putable classical statistical model, can be further extended to
type II fracton orders as fractal condensates [7, 8], and twisted
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fracton topological order [92]. The wave function-deformed
QPT of our study is particularly suitable for realization in pro-
grammable quantum simulators [4, 5, 93], where the applica-
tion of a local nonunitary circuit can directly deform the wave
function. Our 3D tensor network wave function also serves
as a natural variational ansatz for Hamiltonian deformations,
which we leave to future work.
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Numerical phase diagrams of ZN plaquette model

Let us start by highlighting one of our key numerical results
– the morphing of the first-order fracton confinement transi-
tion captured by the ZN plaquette model into a continuous
phase transition as one approaches the N → ∞ limit. In the
main text, we had shown data for the two extreme cases of
N = 2,24 in Fig. 3. Here we want to fill out some of the inter-
mediate values of by explicitly showing the numerical scans
of the phase diagrams for N = 3,4, . . . ,15,16,24 in Fig. 5
(taken with a resolution of ∆t = 0.005, somewhat coarser than
in the main text). The data indicates that all finite N cases be-
have qualitatively similar to the N = 2 case, with the decreas-
ing jumps in the fracton quadrupole amplitude (and a soft-
ened kink in the free energy) indicating the qualitative trend
to weaker first-order transitions for larger N . The quantitative
fitting of this finite-N data and its extrapolation N → ∞ is
shown in Fig. 4 of the main text, where the transition point t+c
is determined as given in Table II below. In performing the
analysis of Fig.4 in main text, we take the data at the critical
point t+c for each N ≥ 7 to fit the following scaling forms: the
jump of monopole condensate fraction extrapolates to a con-
stant 0.5897(5); the inverse fracton confining length scales
as 1/ξf ∝ 2.478(15)/N ; the jump of the fracton quadrupole
amplitude is found to fit 0.04721(1266)/N+5.380(116)/N2.

TABLE II. ZN fracton confinement transition points.

N 2 3 4 5 6 ≥ 7
t+c 0.660(5) 0.995(5) 1.315(5) 1.530(5) 1.570(5) 1.580(5)
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FIG. 5. ZN plaquette model for N = 2,3,4,5,6, . . . ,15,16,24,
calculated by variational iPEPS of fixed bond dimension D = 2, for
which the boundary MPS dimension χ is also fixed to be integer
multiples of D2 or D2N .

Frustration-free Rokhsar-Kivelson Hamiltonian

Here we prove for the Z2 case that the deformed wave func-
tion in the main manuscript can indeed be written as a ground
state stabilized by a frustration free Rokhsar-Kivelson Hamil-
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tonian

HRK = −∑
+
Â+ −∑

◻
B̂◻ +∑

◻
V̂◻ +∑

+
V̂ ′+,

Â+ =∏
l∈+
Zl, B̂◻ =∏

l∈◻
Xl,

V̂◻ =e−h∑l∈◻ µz
l , V̂ ′+ = e−t∑l∈+ σ

x
l ,

(8)

in the same spirit as in Ref. [62]. Using the anti-commutation
relation B̂◻V̂◻(h) = V̂◻(−h)B̂◻ one can show that

(V̂◻(h) − B̂◻)2 = (V̂◻(h) − B̂◻)(V̂◻(h) + V̂◻(−h)). (9)

Because V̂◻(h) + V̂◻(−h) ≥ 0 and (V̂◻(h) − B̂◻)2 ≥ 0,

V̂◻(h) − B̂◻ ≥ 0, (10)

as a positive semi-definite operator. Likewise, for each in-
plane star vertex +, using Â+V̂ ′+(t) = V̂ ′+(−t)Â+ one can show
that

(V̂ ′+(t) − Â+)2 = (V̂ ′+(t) − Â+)(V̂ ′+(t) + V̂ ′+(−t)) ≥ 0, (11)

proving V̂ ′+(t) − Â+ to be positive semi-definite operator.
Therefore the Hamiltonian is a sum of positive semi-definite
operators with positive semi-definite energy spectrum. Then
we show that our deformed wave function is annihilated by
this Hamiltonian i.e. having the lowest energy 0. By using
∣ψ0⟩ = B̂◻∣ψ0⟩ = Â+∣ψ0⟩, one can verify

B̂◻∣ψ⟩ = B̂◻e
1
2 ∑l tσ

x
l +hµ

z
l ∣ψ0⟩

= V̂◻(h)e
1
2 ∑l tσ

x
l +hµ

z
l B̂◻∣ψ0⟩ = V̂◻(h)∣ψ⟩,

Â+∣ψ⟩ = Â+e
1
2 ∑l tσ

x
l +hµ

z
l ∣ψ0⟩

= V̂ ′+(t)e
1
2 ∑l tσ

x
l +hµ

z
l Â+∣ψ0⟩ = V ′+(t)∣ψ⟩.

(12)

Therefore ∣ψ⟩ is the ground state of this Z2 Rokhsar-Kivelson
type Hamiltonian since (V ′+ − Â+) ∣ψ⟩ = (V̂◻ − B̂◻) ∣ψ⟩ = 0.

More generally, a gapped PEPS is guaranteed to have a fam-
ily of frustration-free parent Hamiltonians as a sum of quasi-
local projectors that project onto the nullspace (kernel) of the
linear map from the physical space to the virtual space i.e.
excited states in the Hilbert space, and the uniqueness of the
ground state is related to the injective property of this map
while the topological degeneracy is related to the virtual en-
tanglement symmetry [42].

ZN generalization of coupled toric code layers

For the ZN group, the Pauli matrices are generalized to the
clock (diagonal) matrix Z and the shift (off-diagonal) matrix
X , whose elements are

Zij = ωjδi,j , Xij = δi−1,j ,

where ω = ei2π/N . They satisfyZX = ωXZ and are generally
not Hermitian matrices. Unlike the Z2 scenario, there can be

Z†
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Z XX†
X†

X

Xe
Z my

x

z

x y

mj

nj,z

nj,y nj,x

(a) (b)

(c)

f f̄

f̄ f

m
m
m
m

m̄
m̄
m̄
m̄

(d)

exy

exz

FIG. 6. (a) ZN 2D TC model. (b) Coupled 2D TC layers. (c)
Cube-vertex duality. (d) Fracton is the source of string of massive m
particles. Each m particle is the source of a fluctuating string con-
densed in the vacuum of each 2D TC layer. A fluctuating membrane
woven from the fluctuating strings hosts the fractons at its corners.
The energy cost of the membrane does not scale with its size in the
XC phase, but scales proportional to its side-perimeter in the 2D TCs
phase, and proportional to its area in the trivial PM phase.

different conventions for defining the 2D ZN TC, up to certain
sublattice basis transformations. We use the translationally
invariant convention of Â+ and B̂◻ as shown in Fig. 6a.

The exactly solvable Hamiltonian

H0 = −∑
+
Â+ −∑

◻
B̂◻ + h.c. (13)

stabilizes the ground state with Â+ ∣ψ0⟩ = B̂◻ ∣ψ0⟩ = ∣ψ0⟩.
The ZN e(m) particle is defined by the eigenstate with
Â+(B̂◻) ∣e(m)⟩ = ω ∣e(m)⟩ such that X(Z) moves the e(m)
particle following the orientation as shown by the blue(red)
arrows in Fig. 6a. Notice that it takes N number of e(m)
particles to fuse into the vacuum, and N − 1 number of e(m)
on the same vertex(plaquette) may also be denoted as ē(m̄)
meaning an anti-particle taking negative charge(flux). Also
notice that the positive and negative charges cost the same en-
ergy.

For the 3D construction, consider parallel stacks of 2D TC
in xy planes, rotate them to yz planes and zx planes, and
stack all of them together forming a 3L intersecting layers
of TC [12], where L is the linear system size. As shown in
Fig. 6b, the onsite Ising coupling ZZ creates two pairs of
m(m̄) excitations at the adjacent four plaquettes forming an
elementary magnetic flux loop in 3D, while the onsite Ising
coupling XX† hops a charge pair bound state following the
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TABLE III. Elementary electric and magnetic excitations in 3D TC
and XC subsystems using e, m particles in 2D TC layer as building
blocks.

excitation TC XC

electric e-charge m-string-source (fracton)
magnetic m-loop eē-pair (lineon)

blue arrow. In the following we denote the magnetic flux loop
excitation composed of a loop of m(m̄) particles as m-loop.
The m-loop excitation is one of the elementary excitations in
3D TC, which does not allow open magnetic string excita-
tion due to the magnetic Gauss law. One should not confuse
the 3D m-loop excitation as a collection of m particles that
cost energy, with the string pulled by an individual m parti-
cle that is condensed in the ground state in a single layer of
2D TC. But rather, the energetic m-loop excitation should be
viewed as the boundary of a fluctuating membrane in 3D, just
as m particle is the source or drink of the fluctuating string in
2D. And the fluctuating membrane is in fact woven from the
2D fluctuating strings in this coupled-layer-construction, as
shown schematically in Fig. 6d. The exy ēxz paired composite
particle is a monopole bound to the x axis (Fig. 6b), which is
sometimes called a lineon in literature, since by definition it
is pinned to the line of the two intersecting planes and unable
to move away from that despite any perturbation, which is an
apparent geometrical fact that two Euclidean planes intersect
at not more than just one line.

In this way the inplane 2D particles e and m, also called
planons, are reorganized into the electric charge and magnetic
flux loop in the 3D TC subsystem (a vector gauge system),
and the fractonic charge and magnetic monopole in the 3D XC
subsystem (a tensor gauge system with only off-diagonal elec-
tric field tensor at plaquette center), see Table. III. However,
before anyon condensation, each e and m particle costs en-
ergy, which means two fractons joined by anm string cost en-
ergy linearly proportional to their distance, and are thus con-
fined into a fracton dipole. Notice that the fracton dipole as a
short openm string segment is deconfined in 2D TCs but con-
fined in the trivial phase. A bosonic charge moving from the
xy plane to the xz plane inevitably leaves behind a monopole
exy ēxz which costs energy. Therefore the stacked 2D TCs, de-
spite the basis transformation, should be contrasted from the
so-called hybrid fracton orders in Ref. [56].

Fig. 6c shows the cube-vertex duality for the 3D cubic lat-
tice, which swaps cubes to vertices, and links to plaquettes.
The colored planes denote the original cubic lattice, while
the black skeleton shows its dual counterpart. The quantum
wave function for the 3D TC(XC) can be rewritten as a dual
quantum paramagnet where the classical variables {n}({m})
reside on the links(sites) of the dual cubic lattice while the
physical variables reside on the links of the original lattice.

The wave function of the stacked ZN TC at its solvable

fixed point is generalized to

∣ψ0⟩ = ∑
{n}
∣Z∂p∩∂q = ωnp−nq ⟩, (14)

where {n = 0,1, . . . ,N−1} is the ensemble of virtual classical
variables. In this abbreviated equation, since Z ≠ Z† for N >
2, one should particularly take care of the orientation from p
to q in order to fulfill the star stabilizer Â+ ∣ψ0⟩ = ∣ψ0⟩. For
example, in the xy plane of Fig. 6a, p = q −x or p = q + y. For
the other planes, one cyclically permutes (x, y) to (y, z) and
(z, x).

Again we can perform a basis transform and relabel the ZN

clock spin operators into

µz
l ≡ Zl1Zl2 , µx

l ≡Xl2 , σx
l ≡Xl1X

†
l2
, σz

l ≡ Zl1 . (15)

Here l1, l2 are defined respecting the cyclic permutation
around the (1,1,1) direction: For example, take l1 as the link
originating from the xz(yx)(zx)-layered TC while l2 from
the xy(yz)(zx)-layered TC, although both of them point to-
ward the x(y)(z) direction, as follows:

x1x2
y1
y2

z1z2

. (16)

In the ground state ∣ψ0⟩ the ZN Gauss laws for vector gauge
and tensor gauge theory are satisfied

μz = 1 =
μz

μz

μz†
μz†

μz†

σx
σx

σxσx†

σx† σx†
σx†

σx†
σx†

σxσx

σx

. (17)

Nevertheless, if tracing out either subsystem one can get
a mixed state with proliferated vector-gauge magnetic flux
loops, or tensor-gauge magnetic monopoles because

⟨ψ0∣∏
l∈◻
µ
x(†)
l ∣ψ0⟩ = 0 = ⟨ψ0∣∏

l∈+
σ
z(†)
l ∣ψ0⟩ . (18)

Our target is the deformed wave function as follows

∣ψ(t, h)⟩ ≡ e 1
2 ∑l hµ

z
l +tσ

x
l ∣ψ0⟩ . (19)

Quantum classical mapping

In this section, we will detail how to map the general
ZN coupled 2D TCs wave functions onto respective classi-
cal models. The key result is that the classical counterpart is
always exactly factorized into the classical gauge and classi-
cal plaquette models. It is most straightforward to work in the
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vertex representation based on the Z-basis: ∣ψ0⟩ then is a su-
perposition over all {Z} configurations that satisfy the inplane
vertex rules Â+ = 1

∣ψ0⟩ = ∑
{Z}
∏
+

1 + Â+
2
∣{Z}⟩ . (20)

For every unit-cell there are three independent ZN constraints
in total. Upon the basis transformation into {µ,σ},

σ̄μ
σ

σμ̄
σ̄ = = 1=|ψ0⟩ = ∑

{μ,σ}
σ̄μ

σ̄μσ

σ
σμ̄

σμ̄σ̄

σ̄

μ

μ̄
= = 1== ∑

{μ,σ}
σ̄μ

σ̄μσ

σ
σμ̄

σμ̄σ̄

σ̄
μ

μμ̄

μ̄ ,
(21)

which becomes an entangled quantum vertex state. Physically
speaking, the TC electric string turning point in {µ} subsys-
tem is entangled with the XC monopole in {σ} subsystem.

Our objective is the partition function

⟨ψ0∣ e
1
2 ∑l(tσx

l +hµ
z
l +h.c.) ∣ψ0⟩

obtained by contracting two hyper-layers of TN state for
⟨ψ∣ and ∣ψ⟩ joined by a set of local nonunitary gates
e(tσ

x+hµz+h.c.)/2:

= →

|ψ⟩

⟨ψ | ⟨ψ |ψ⟩

, (22)

where the red box denotes the local physical gate, and af-
ter contraction the double virtual indices are grouped into a
thicker virtual index of dimension N2, which can be further
compressed into dimension N as follows: Firstly, ehµ

z/2+h.c.

is a local diagonal gate and seals {µ} in the ket layer and the
bra layer to be identical and follow the Gauss law constraint:

μ

μ̄
μ

μμ̄

μ̄

= 1∑
{μ}

= = 1σ× ∑
{σ}

σ

σ

σ

σ

σ
σ

σ
μ

μ

μμ = 1⟨ψ |ψ⟩ = ∑
{μ}

μ

μ

= = 1σ′ ̄σ

σ̄′ σ

σ̄′ σ

σ′ ̄σ σ′ ̄σ

σ̄′ σσ̄′ σ

σ′ ̄σ
∑

{σ′ ,σ}
. (23)

Secondly, etσ
x/2+h.c. as a rotation operator can connect {σ}

in ∣ψ0⟩ to an independent set {σ′} in ⟨ψ0∣, where the offset
{σ̄′σ ≡ ωm} is weighted by its Fourier coefficient

e
t
2 (X+X

†) =
N−1
∑
m=0

p2m(t)Xm,

pm ≡
¿
ÁÁÀ 1

N
∑
k

et cos
2πk
N ωkm,

(24)

where Xm shifts the clock variable by m units. Thirdly,
observe that the vertex constraints in ket layer express the
entanglement between {µ} and {σ}, and the same vertex
constraints in bra layer express that between {µ} and {σ′}.
Therefore the offset distribution {σ̄′σ} is free from being en-
tangled with {µ} but is constrained to follow the latter two
vertex constraints:

μ

μ̄
μ

μμ̄

μ̄

= 1∑
{μ}

= = 1σ× ∑
{σ}

σ

σ

σ

σ

σ
σ

σ
μ

μ

μμ = 1⟨ψ |ψ⟩ = ∑
{μ}

μ

μ

= = 1σ′ ̄σ

σ̄′ σ

σ̄′ σ

σ′ ̄σ σ′ ̄σ

σ̄′ σσ̄′ σ

σ′ ̄σ
∑

{σ′ ,σ}
. (25)

We can further compress the variable σ̄′σ ≡ σ̃, and perform
a sublattice basis transformation that doubles the unit-cell to
make the vertex rules for both µ and σ̃ mirror reflection sym-
metric. Finally, the partition function is factorized into a
weighted average over all allowed vertex configurations that
satisfy the vertex rules:

μ

μ̄
μ

μμ̄

μ̄

= 1∑
{μ}

= = 1σ× ∑
{σ}

σ

σ

σ

σ

σ
σ

σ
μ

μ

μμ = 1⟨ψ |ψ⟩ = ∑
{μ}

μ

μ

= = 1σ′ ̄σ

σ̄′ σ

σ̄′ σ

σ′ ̄σ σ′ ̄σ

σ̄′ σσ̄′ σ

σ′ ̄σ
∑

{σ′ ,σ}

,
(26)

where each µ leg is weighted by ehRe(µ)/2 and each σ̃ ≡ ωn leg
is weighted by pn. Such classical vertex models are readily
expressed as classical TNs, with each vertex being the local
rank-6 tensors

T̂g = δ∑l nl,0 × e
h
2 ∑l cos( 2πN nl),

T̂p = δmw+me+mu+md,0δmn+ms+mu+md,0 ×∏
l

pml
.

(27)

By the cube-vertex duality l ↔ ◻, each leg variable can be
represented by a dual plaquette variable µl ≡W◻, σ̃l ≡W ′

◻ to
automatically satisfy the vertex rules (23) and (25) :

= = 1σ σ̄

σ̄

σ

σ̄

σ
σ

σ̄

μ

μ̄
μ

μμ̄

μ̄

= 1

W′ 

2 1

4 3

5

6

7
W′ x = ωm1−m2−m3+m4

W′ y = ωm1−m3−m5+m6

W′ z = ωm1−m2−m5+m7

Wx = ωn1−n2−n3+n4

12
3

4

56

7

89

Wy = ωn6−n7−n1+n5

Wz = ωn3−n8−n6+n9
WW↔

↔
,

(28)
where W (W ′) is the ZN plaquette interaction terms over the
links(sites). In this way ⟨ψ∣ψ⟩ is mapped to a combination of
classical models

ϵg = −
h

2
∑
◻
W◻ + h.c.,

ϵp = −∑
◻
ln( 1

N

N−1
∑
k=0

et cos
2πk
N W ′k

◻ ) ,
(29)
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where ϵg is the standard ZN lattice vector gauge model [85,
86], while ϵp is a ZN generalization for the plaquette Ising
model with planar ZN subsystem symmetries.

Now we discuss the physical meaning of observables in the
vertex TN and the classical models, explaining the dictionary
table in the main text. Firstly, as seen from Eq. (22), a diagonal
operator µ acted on a vertex leg can be lifted to the physical
spin µz , which creates the m-loop excitation surrounding the
leg. A product of such operators forming a membrane creates
a large m-loop at the membrane boundary ∂M . In the classi-
cal gauge model it is equivalent to the Wilson loop observable
because∏l∈M µ =∏◻∈M W◻. Secondly, a membrane of diag-
onal operators σ̃ = σ̄′σ inserted to the vertex leg is equivalent
to inserting a membrane of σz operators into both the ket ∣ψ⟩
and the bra ⟨ψ∣ in Eq. (22), which creates four fractons at the
membrane corners. An individual σ̃ operator corresponds to
a tightly bound fracton quadrupole. In the classical plaque-
tte model, the membrane corresponds to the four point corner
correlation function, and each classical spin operator at each
corner represents a fracton charge. These two diagonal mem-
brane operators are schematically shown below:

μ

μ μ

μ

W W

W Wm̄
m̄

m
m

m̄ m̄

m m

= =

σ

σ σ

σ

W′ W′ 

W′ W′ 

f

f

f̄

f̄

= =

.
(30)

Thirdly, an off-diagonal matrix X inserted to a virtual leg can
be absorbed to one adjacent vertex, which violates the ver-
tex rules. The local violation of rule (23) corresponds to a
boson charge defect, while the local violation of rule (25) cor-
responds to tunneling of a (lineon) magnetic monopole.

X cube model and its tensor network wave functions

In this section we specifically discuss the pure X cube
ground state wave-function, which has several equivalent rep-
resentations and classical model counterparts, summarized in
Fig. 7. To start, the pure ZN X cube model contains three
inplane star stabilizers and a cube stabilizer (Fig. 7ab). There
are three equivalent TN representations for the its ground state
wave function in Fig. 7cde, explained in the following:

• Representation-1: dual plaquette clock paramagnet. σz =
ωm1−m2−m3+m4 expresses σz as the domain corner degree
of freedom for the classical plaquette clock model. In this
way each classical configuration automatically favors the
star stabilizers, and the superposition over classical config-
urations is enforced by the cube stabilizer

∣ψ0⟩ = ∑
{m}
∏
◻
∣σz
◻ = ωm1−m2−m3+m4⟩ . (31)

As shown in Fig. 7c, it is readily generated by rank-12 ten-
sors of bond dimension N at sites, joined by rank-5 tensors
at plaquette centers. However, this network does not have a
simple cubic lattice geometry.

• Representation-2: dual anisotropic Ashkin-Teller paramag-
net. There are two virtual classical ZN spins at each site,
as shown in Fig. 7d. By expressing the physical variable σx

as the domain wall of the classical spins, the cube stabilzer
can automatically be favored in each classical configuration.
The star stabilizers then superpose all the classical configu-
rations

∣ψ0⟩ = ∑
{m,n}

∣σx
j,x = ωmj+x−mj ⟩⊗ ∣σx

j,y = ωnj+y−nj ⟩

⊗ ∣σx
j,z = ωmj+nj−mj+z−nj+z⟩ .

(32)

In this way it can be generated by a rank-6 tensor with bond
dimension N . This TN, however, is not mirror reflection
symmetric.

• Representation-3: quantum vertex model in σz basis, shown
in Fig. 7e. The virtual variables are taken to be identical to
the physical µz = ωm where m = 0, . . . ,N − 1, which are
subject to a vertex rule declared by the star stabilizers

∣ψ0⟩ =tTr∏
j

δmw−me+mu−md,0δmn−ms+mu−md,0×

∣σz
j,x = ωms⟩⊗ ∣σz

j,y = ωme⟩⊗ ∣σz
j,z = ωmu⟩ .

(33)

Notice that one can perform a basis transformation
σz
j,x(y)(−z) → σz†

j,x(y)(−z) for j in a bipartite sub-
lattice to make the vertex rule, i.e. the star sta-
bilizers in Fig. 7a, symmetric under mirror reflection
δmw+me+mu+md,0δmn+ms+mu+md,0. It is equivalent to dou-
bling the unit-cell for the Hamiltonian, while the wave func-
tion is still translationally invariant. Then we get a mirror
symmetric real rank-6 tensor of bond dimension N . For in-
stance, for the simplest Z2 scenario there are, due to the two
constraints in each vertex, 26−2 = 16 allowed classical ver-
tex configurations, which constitute the elementary vertices
for the σz classical configurations in the wave function, ex-
panded as a cuboid condensate (Fig. 7fh).

Working with with the representations above, we can con-
tract out the physical variables for all three representations
of the same partition function defined by ∥etσx/2 ∣ψ0⟩∥

2
, see

Fig. 7g. The structures are the same as the wave-functions,
but the tuning parameter h acting upon the physical variables
is elevated to control the interaction strengths between the vir-
tual variables. In the σx representation, it is straightforward to
contract out the physical variables while sealing the ket hyper-
layer and the bra hyper-layer into an extremely anisotropic
Ashkin-Teller model on the cubic lattice [13, 68], which is
also related to the dual height representation for the tensor
gauge theory [20]. There are two classical clock spins on
each site, denoted as black dots in the figure, and there is an
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FIG. 7. ZN X cube Hamiltonian, its tensor network ground-state wave functions and corresponding classical models. (a) the cube
stabilizer; (b) Three inplane star stabilizers. (c) wave function as a dual plaquette clock paramagnet in σz basis, generated by the rank-12
tensors of bond dimension N at site joined by rank-5 tensors on plaquette centers. (d) wave function as a dual anisotropic Ashkin-Teller
paramagnet in σx basis, generated by rank-6 tensors of bond dimension N in a simple cubic lattice. (e) wave function as a quantum vertex
model in σz basis, generated by the rank-6 tensor of bond dimension N . Black dots are for dummy virtual classical variables. (f) The wave-
function is a cuboid condensate as superposition of σz = −1 cuboids configurations. (g) The corresponding equivalent classical models where
physical variables have been contracted. (h) For the simplest Z2 case, we show all the 16 classical vertex configurations as required by the
star stabilizers in (a). The thin black link takes value m = 0 while the bold red link takes m = 1. The composition of the vertices leads to the
cuboid condensate in (f).

oriented clock interaction between nearest neighbors, denoted
as open circle in the figure. Thus the classical model may be
written as

ϵd = −t Re∑
j

ωmj+x−mj + ωnj+y−nj + ωmj+nj−mj+z−nj+z .

(34)
Physically speaking, this oriented interaction originates from
the fact that the magnetic lines in the XC are pulled by the
monopoles and therefore become one dimensional arrays. In
the σz representation, we can first go to the dual vertex repre-
sentation as we have done in the previous section

⟨ψ∣ψ⟩ = ⟨ψ0∣ e
t
2 ∑l(σx

l +σ
x†
l
) ∣ψ0⟩

= ∑
{m}
∏
l

p2ml
⟨ψ0∣ (σx

l )ml ∣ψ0⟩ = tTr∏
j

T̂p(j) , (35)

which we can alternatively interpret as a vertex model or a
classical TN. The vertex constraint can be automatically sat-
isfied by a vertex-cube duality and representing the vertex
leg variable as the plaquette variable, leading to the plaque-
tte clock model

ϵp = −∑
◻
ln( 1

N

N−1
∑
k=0

et cos
2πk
N W ′k

◻ ) . (36)

The relation between the three equivalent classical models is
shown in Fig. 7g. We note that this treatment from Eq. (34) to

Eq. (36) is essentially the Kramers-Wannier duality in classi-
cal statistical physics, and indeed − lnp2m(t) is related to t by
the Kramers-Wannier relation in swapping high temperature
with low temperature: the smaller coupling t, the larger rela-
tive weight p20(t) favoring the ordered phase. At the extreme
t = 0, p2m(t) = δm,0 such that only {m = 0} configuration
contributes to the partition function. Check that for N = 2,
p20(t) = cosh t, p21(t) = sinh t which gives the dual coupling
strength t′ = − 1

2
ln(p21/p20) = 1

2
ln coth t, consistent with the

well-known Kramers-Wannier relation e−2t
′ = tanh t in the

Ising case.

A map from ZN X-cube model to ZN tensor-gauge theory

As shown in Fig. 8a, the ZN Pauli matrices on the original
link center can be mapped to the electric field E and gauge
field A on the dual plaquette center. In this way, the X cube
stabilizer term enforces the Gauss law

∂i∂jEij mod N = 0 (37)

of ZN tensor-gauge theory in the ground state. In this case,
the diagonal element of the symmetric electric field tensor (a
3-by-3 matrix) is restricted to zero, and the off-diagonal ele-
ment e.g. Exy resides on the plaquette center in xy plane. This
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is described by the hollow tensor gauge theory [20, 22, 24].
Such gauge theory naturally emerges in gauging a matter with
subsystem symmetry, which corresponds to subsystem charge
conservation law, a stronger version of the dipole conserva-
tion law. In Fig. 8b, as the gauge field Axy is a canonical vari-
able with Exy , applying the generator e−iAxy onto a plaquette
raises Exy by one unit, and creates four gauge charges sur-
rounding the plaquette, consistent with the Gauss law. Notice
that the total charges in any plane is conserved in this pro-
cess. On top of the vacuum, such Gauss law requires that all
the gauge charges lie at the corner of certain membrane with
nonzero electric field. Moving the gauge charges is equivalent
to moving the electric field membrane, which explains the ori-
gin of fracton mobility: a corner of a membrane cannot move
alone by itself.

Such gauge description can be generalized to the compact
U(1) case, when A becomes continuous and E is unlimited
integer, and the Gauss law no longer needs to be mod N .
The mod N part in the Gauss law actually corresponds the
physical Higgs mechanism: one can take the U(1) model as
a parent state and apply Higgs mechanism to condense N
charges into any finite ZN model. Alternatively, one can also
start from the discrete ZN model and increase N to approach
the unHiggsed compact U(1) limit.

σz ∼ eiA

σx ∼ ei 2π
N E

∂i∂jEij mod N = 0

HXC =
σx†

σz†

σz
− − −− σx

dual lattice

Gauss law of ℤN symmetric tensor-gauge theory

+

+

−

−
Exy = 1Exy = 0e−iAxy fracton charges

(a)

(b)

FIG. 8. A map from X-cube model to tensor-gauge theory. In
the dual lattice, the field lies at the plaquette center. (a) In the Hamil-
tonian, the cube term stabilizer is mapped to an energy penalty that
enforces the Gauss law of the tensor-gauge theory surrounding a ver-
tex i.e. setting the bare mass of the gauge charge. The star term is
also mapped to some closed surfaces that sets the bare mass of the
magnetic vector monopole. (b) Increasing electric field in the pla-
quette center creates the fracton gauge charges at the corners.

Boundary fixed point iPEPS method

In this section we elaborate on the numerical contraction of
the 3D TN using the boundary fixed point iPEPS method, and
discuss its relation to the reduced density matrix and second

order Rényi entropy in a half-system partition.
To efficiently contract the 3D tensor network numerically,

we employ the variational iPEPS method for classical statisti-
cal models [71]. Each slice of the 3D TN is a tensor product
operator and can be viewed as a transfer matrix. Its dominant
eigenvector represents the semi-infinite large subsystem, often
called a fixed point, which can be approximately parametrized
as an iPEPS with moderate finite bond dimension D. The
effective free energy of the classical TN, i.e. − ln ⟨ψ∣ψ⟩ (see
Table I of the main text), as well as its gradient with respect to
the iPEPS tensor element, can be obtained by contracting out
the transfer tensor product operator sandwiched by the iPEPS
ansatz. The effective free energy is iteratively minimized by
the quasi-Newton (LBFGS) algorithm carried out in our Ju-
lia implementation with the NLopt package [74, 94] until the
norm of the gradient tensor (absolute maximum of the tensor
elements) drops below the tolerance threshold (usually taken
as ≲ 10−6 in our case). Each iteration requires contracting out
two 2D TNs, which can be carried out using uniform matrix
product state (MPS) to approximate fixed point of 2D transfer
operator [69], as shown in Fig. 9. In the end, one arrives at a
self-consistent iPEPS as the boundary fixed point.

The numerical approximation is controlled by the virtual
bond dimension of the iPEPS denoted as D and the virtual
bond dimension of the vuMPS denoted as χ. Generally, the
iPEPS calculation is by default set in an infinite system size,
but the correlation length it can reach may be bounded by the
PEPS bond dimension, which leads to the finite bond dimen-
sion effect. There can be different ways of finite bond dimen-
sion scaling in the literature. (But we also caution the reader
that a PEPS with finite bond dimension does not necessarily
have finite correlation length, because counterexamples can
easily be constructed by mapping any two dimensional dis-
crete classical model into the coherent quantum wave func-
tion [41, 62]). For each iteration during the numerical opti-
mization we need to contract specifically a 2D TN with total
bond dimension ND2 for ⟨ϕ∣T̂ ∣ϕ⟩ and a 2D TN with bond
dimension D2 for ⟨ϕ∣ϕ⟩, where ∣ϕ⟩ denotes the fictitious 2D
quantum wave function generated by the iPEPS. Notice that
the 2D transfer tensor product operator may be interpreted as
a imaginary time evolution operator of a 2D quantum system,
and the optimization for the boundary fixed point is analo-
gous to finding the 2D quantum ground state as an infinite
PEPS [53–55, 69, 70, 72]. The difference is in that in our
case we need to optimize a rank-6 tensor product operator T
instead of a local rank-2 Hamiltonian matrix, and so the com-
putation complexity is higher (ND2 vs. D2). Further vir-
tual symmetries inside the iPEPS, like the ones considered in
Ref. [51],are not explicitly considered here, because we want
to fully utilize the limited finiteD space we can get especially
for large N ≳ 10. Also it does not harm because the entan-
glement symmetry of our 3D quantum TN state acts on the
physical indices of the boundary iPEPS instead of the PEPS
virtual dimension. Nevertheless, we always impose a mirror
reflection symmetry and fix ourselves a priori to the trivial
representation i.e. no sign change upon mirror reflection, re-
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ĀR

C

C

≈

(a)

(b)

Boundary vuMPS

Linear transfer matrix

⋯ ⋯⋯

⋯
⋯
⋯

⋯
⋯
⋯ ≈

Boundary iPEPS

D

(c)

FIG. 9. Tensor network calculation for physical observables. (a) Semi-infinite classical TN with dangling bonds in a 2D interface is
captured by its fixed point, which can be approximated by a variational uniform iPEPS of bond dimension D. (b) The membrane correlation
is defined as the expectation value of a product of local diagonal operators (Z + Z†)/2 = ⊕N−1

n=0 cos( 2π
N
n) over the red membrane being

inserted into the bonds of the TN of ⟨ψ∣ψ⟩. The resulting 3D TN is approximately compressed by iPEPS method into a two dimensional
TN, which is further compressed into a one-dimensional MPS of bond dimension χ. The iPEPS and the vuMPS are renormalized. For
infinitely large membrane, the asymptotic membrane correlation length scale can be calculated by

√
−1/ lnκ where κ is the unit-cell fraction

of the number by fully contracting the 2D TN. (c) The two point correlation or one point observable can be likewise computed by inserting
the corresponding operator into the virtual bond of the TN. For example, inserting a single cos (2πn/N) operator measures the ZN spin
magnetization Re⟨ψ∣µz ∣ψ⟩; inserting a single X operator measures the norm of a charge excitation ⟨e∣e⟩. The correlation length ξ = −1/ lnλ2

can be computed from the sub-leading eigenvalue of the effective linear transfer matrix outlined by the dashed line.

quired by the vuMPS method for good performance. Unlike
solving a 2D quantum Hamiltonian, the iPEPS ∣ϕ⟩ we opti-
mize is the boundary fixed point that contains the information
for the reduced density matrix when half of the system in the
transfer direction is traced out [44]. Let us denote the opti-
mized boundary fixed point iPEPS as

∣ϕ⟩ = tTr(∏
j

An(j)) , (38)

where An(j) is a rank-5 PEPS tensor at site j with a dangling
bond n = 0, . . . ,N −1 corresponding to the virtual bond of the
3D TN. One should not confuse this rank-5 PEPS tensor with
the boundary MPS rank-3 tensor drawn in Fig. 9.

For T̂g , the classical gauge model, the TN is obtained from
the m-loop condensation phase transition, recall that the vir-
tual bond is compressed from the double layer TN ⟨ψ∣ψ⟩,
where the virtual indices from the bra layer and ket layer are
identical due to the diagonal deformation. The reduced den-
sity matrix of tracing out half of the infinitely large cubic lat-

tice in open boundary becomes a diagonal matrix generated
by the uniform tensor product operator:

ρ̂{n},{n} = tTr
⎛
⎝∏j

An ⊗An(j)
⎞
⎠
, (39)

where nj is left as the dangling indices representing the ef-
fective boundary degree of freedom. The normalization of
reduced density matrix is equivalent to the normalization of
the iPEPS Trρ̂ = ⟨ϕ∣ϕ⟩. We can then derive the second order
Rényi entropy by

e−SR = Trρ̂2

= tTr
⎛
⎝∏j
∑
n

An ⊗An ⊗An ⊗An(j)
⎞
⎠
≡ e−aL

2 lnN ,
(40)

in which the contraction of four-layer 2D TN can again be
computed by vuMPS method for the area law coefficient a of
the entanglement entropy. Notice that the trace of the second
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order reduced density matrix here resembles the inverse par-
ticipation ratio of ∣ϕ⟩ in the many-body space. The result is
shown in Fig. 10a, where a kink appears near the phase tran-
sition point hc ≈ 0.7614.

For T̂p, the classical plaquette model responsible for fracton
phase transition, this is already a compressed TN for ⟨ψ∣ψ⟩,
for which we need to retrieve the discrimination between the
ket layer and the bra layer. Recall that the deformation is off-
diagonal by σx, and so the compressed virtual bond dimension
is taken as the offset between the ket layer and bra layer. The
reduced density matrix follows as

ρ̂{m},{m′} = tTr
⎛
⎝∏j

1

N
∑
m′′
Am−m′′ ⊗Am′−m′′(j)

⎞
⎠
, (41)

which is a double layer tensor product operator. The normal-
ization of the reduced density operator is then equivalent to the
normalization of the iPEPS Trρ̂ = ⟨ϕ∣ϕ⟩. Again the contrac-
tion of the four-layer 2D TN can be computed by the vuMPS
method for the area law coefficient a of the entanglement en-
tropy, see Fig. 10b. At t = 0, the fixed point becomes exactly a
polarized state such thatAm≠0 = 0, such that ρ̂ becomes a uni-
form diagonal matrix. In an infinite lattice under open bound-
ary condition, there is no global constraint. Therefore ρ̂ is an
infinite temperature density matrix supported at the boundary,
yielding the maximal area-law entropy: SR = L2 lnN + . . ..
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FIG. 10. Area law coefficient a for the 2nd Rényi entropy SR =
aL2 lnN + . . . for the QPT (a) between Z2 3D toric code state and
trivial state; (b) between Z2 3D X cube state and trivial state. L is
the linear system size. It is based on the D = 2 data.

Supplemental data for ZN toric code QPT

The 3D toric code QPT also shows a kink for the magne-
tization [77] and a peak for the correlation length, due to fi-
nite bond dimension effect. In principle the correlation peak
shall diverge if larger bond dimension is used to further op-
timize the boundary PEPS [51, 53, 54, 71]. Notice that for
Z2 case, D = 4 does not gain significantly more free energy
in our practice within accessible computation runtime, and so
does not lead to significantly different observables than D = 3
case, which is also the practically economically optimal bond
dimension for 3D Ising model in Ref. [51, 54, 71]. We present

the data for (N = 2,D = 3, χ = 72) and (N = 5,D = 2, χ =
80) in the main text.
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FIG. 11. Supplemental observables for 3D ZN toric code QPT for
(a) N = 2 and (b) N = 5 for varying bond dimensions D,χ.

Supplemental data for ZN X cube QPT

Here we show additional data for the ZN X cube confine-
ment transition based on the plaquette model calculated us-
ing different iPEPS dimensions D and vuMPS dimensions χ.
The main observation is that the finite bond dimension effect
is rather weak for finite N , due to the first-order nature of the
transition.

As summarized in Fig. 12, we explore MPS bond dimen-
sion effects by employing the iPEPS algorithm with fixed
D = 2 and then optimizing for vaying χ. The calculated ob-
servables for varying χ do not significantly change, except
for the classical correlation length. Then for small N = 2,3,
we can also upgrade the optimization for larger iPEPS bond
dimensions D → 3,4, as shown in Fig. 13. In practice, we
have run the optimization with different starting points, using
both random symmetric initial points as well as converged nu-
merical samples of smaller bond dimension D = 2 decorated
with symmetric noise of order 10−3,10−4. However, despite
several such runs for each parameter point, we find it rather
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FIG. 12. Finite MPS dimension effect shown for the (a) Z2 (left panel) and (b) Z24 (right panel) plaquette models with fixed PEPS bond
dimension D = 2 but varying MPS bond dimension χ. The insets show the corresponding observables at t+c i.e. the critical point at the
disordered confined phase side, versus the inverse MPS bon dimension 1/χ. For the Z2 scenario, it indicates that χ = 4 is already approximately
sufficient in yielding the converged observables except the correlation length, which can further grow for larger χ. For the Z24 scenario, larger
χ up to χ = 96 gains more classical free energy, but most of physical observables do not change significantly with growing χ, except the
correlation length.
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FIG. 13. Finite iPEPS dimension effect for the (a) Z2 (left panel) and (b) Z3 (right panel) plaquette model. Insets show the D dependence of
observables at t+c .

difficult to further lower the free energy by more than 0.0001.
This situation is quite unlike the gauge model with its contin-
uous phase transition, where, for the Ising case, D = 3 yields
significant improvements over D = 2 as shown in Fig. 11. We
attribute this numerical phenomenon to the strong first-order
nature of the transition for small N in the plaquette model,
which therefore has short correlation lengths and can be suffi-
ciently described by iPEPS with only small bond dimensions.

In the following we comment two technical issues related
with local minimum in the optimization process.

Firstly, near the critical point t ≃ tc, due to the first order
transition nature, there is a significant adjacent metastable lo-
cal minimum, which could trap the iPEPS optimization lead-
ing to the hysteresis-like pattern near the kink in the free en-
ergy curve. Hence we take at least two limiting samples for
optimization, one starting from a fully random real mirror
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symmetric iPEPS i.e. disordered state, and one starting from
a strongly polarized random real mirror symmetric iPEPS,
where we multiply a factor of ≃ 10−2 to the physical indices
n(m) > 0. Then we compare their final free energy densities.
Alternatively, if time allows one may also sweep the phase
diagram sequentially from left to right and from right to left,
using the previous converged iPEPS as the starting point for
next parameter, which shall display a hysteresis loop.

Secondly, in the ordered phase for t ≲ tc, the boundary
iPEPS is a state very close to a polarized state, which is a
numerical singularity point that can also trap our optimization
process. For Z2, with the diagram for the 16 vertices explic-
itly drawn in Fig. 7h, with each leg weighted by pm(t), we
can gain some analytical insight into the boundary iPEPS as
the dominant eigenstate for the linear transfer map generated
by a layer of vertices. Deep in the classical ordered phase
t ≪ tc, the vertex leg weight function p1 ≪ p0, so that the
vacuum configuration {m = 0} dominates, which allows a
low-temperature expansion into this linear transfer operator:

+( p1
p0 )

12
+⋯∏

j=(x,y,0)
̂Tp( j) = +( p1

p0 )
1+2L

,
(42)

where the subleading term is the fluctuation of a minimal half-
cuboid shifting four nearest neighbor variables 0000 → 1111.
The fluctuation with larger cuboid scales exponentially with
its total edge lengths reminiscent of the perimeter-law of Wil-
son loops in the classical gauge theory. But compared with
loop fluctuations in the vector gauge theory, the cuboid fluctu-
ations generally invoke more legs and take the form of higher
order perturbations. Therefore, away from the ordered limit
t = 0 where {m = 0} and W ′

◻ = 1, we would expect relatively
weak fluctuations to W ′

◻ ≲ 1 which is the quadrupole ampli-
tude we show in Fig. 3bd of the main text. Given the fact that
the correlation length does not need to grow too large towards
the first order phase transition, the feature of weak fluctuation
may persist until the the transition. Indeed this is what we
observe in our iPEPS numerical computations. Note that the
boundary iPEPS for the ordered phase can thus be well ap-
proximated by a simple fully polarized state, i.e. a mean-field
ansatz.

One should note, however, that while the fully polarized
state might provide the cheapest numerical approximation
to the boundary, it can also become a dangerous trap for
the iPEPS optimization based on a single-site-gradient-tensor.
The latter is obtained by sandwiching the transfer operator
with the variational PEPS leaving only one vacancy. In this
case, it is obtained by fixing all the top and bottom indices of
the linear transfer operator into 0 while leaving only one-site

vacancy:

0
0
0

0
0 0

0
0
0

0
0

0
0

0
0

0
0

0
0
0

0
0 0

0
0
0

0
0

0
0

0
0

0
0+const( p1

p0 )
L

grad(0) = +⋯

.
(43)

From the vertex rule one can deduce that the single-site gra-
dient tensor, in an infinite lattice, would have exponentially
small components away from the polarized limit, prohibiting
further optimization search. In other words, the fully polar-
ized state is a singular point in the numerical computation,
which is not a true physical local minimum. This numerical
singularity in the single-site gradient originates from the strict
elementary vertex rule in the linear transfer map, which also
occurs in the gauge model. Generally it would not become
a practical problem when the true global optimized iPEPS is
far away from this singular point. However, in the ordered
phase of the plaquette model, it is actually quite close. In
practice, we therefore mainly use random symmetric iPEPS as
the starting point for the first round of optimization. Then to
avoid being trapped in the physical local minimum due to the
first order transition, we run another optimization using a ran-
dom symmetric iPEPS with m > 0 component suppressed by
a factor of 10−2 as our starting point for optimization, which
would favor the ordered phase. Occasionally we also run sev-
eral more optimizations with different random starting iPEPS.
In the end, we keep only the one convergent numerical sample
with lowest free energy. As it turns out, near t ≲ tc, some of
our numerical optimized iPEPS samples are indeed attracted
into the polarized trap vicinity, evaluating the diagonal on-
site observable extremely close to 1.0. Under this situation
we would add some noise of order 10−1 to iPEPS and run
the optimization again, until we get to a new minimum, which
sometimes gains ∼ 0.1% more free energy density than the po-
larized state. Moreover, we find that the singular case of the
D = 1 product state can only approximately describe the or-
dered phase t < tc, but not the disordered confinement phase
t > tc. For t > tc we have numerically confirmed that the
classical free energy of the disordered local minimum for the
D = 1 ansatz is higher than the ordered local minimum. Last
but not least, we also comment that the fact that the boundary
iPEPS fixed point becomes an exact polarized state at t = 0
does not imply trivial physics in the 3D quantum wave func-
tion, an XC ground state at its fixed point. In fact, the bound-
ary iPEPS captures the reduced density operator. The po-
larized boundary PEPS in this basis yields diverging fracton
confinement lengthscale, although the monopole correlation
length is zero, and it leads to a reduced density matrix with
maximal area-law entropy.

Fracton dipole condensation in pure X cube

Besides the fracton confinement transition tuned by tσx,
here we also briefly comment on the fracton dipole condensa-
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tion transition tuned by λσz . σz acting on a link creates the
tightest fracton quadrupole on the adjacent cubes, and fluctu-
ates the tightest fracton dipole, which is a planar composite
particle mobile in the plane perpendicular to the dipole bond.
Its condensation criticality is thus argued to be described by
a coupled 2D CFT [38]. In our wave-function deformation
approach, where we use a TN representation in the σz basis
as shown in Fig. 7, it is straightforward to see that it is di-
rectly described by a plaquette model controlled by λ acting
as inverse temperature

⟨ψ0∣ e
λ
2 ∑l σ

z
l +h.c. ∣ψ0⟩ = ∑

{m}
eλ∑◻ ReW ′

◻ . (44)

For the Z2 scenario we can immediately deduce a first-order
transition at λc = 1

2
ln coth tc, that separates the XC, from the

fracton dipole condensed trivial paramagnet phase. For the
generic N scenario, it is not exactly equivalent to the model
we computed, because there is no higher power of plaquette
interaction in this case. Cast in the vertex representation, we
have the same vertex rules, but the leg weight function pn for
n = 0,1, . . . ,N − 1 is quantitatively modified. The numerical
computation for this model remains to be explored in future
work.

Comparison with previous studies into the fracton QPT

The XC topological order is essentially a lattice ZN

hollow(off-diagonal) tensor gauge theory coupled with frac-
tonic matter charge. Ref. [38] recently discusses the low en-
ergy effective field theories for its QPT: while a single fracton
charge is too restricted to fluctuate, the authors mainly dis-
cussed the matter fluctuation of fracton electric charge dipole,
and the gauge fluctuation of a lineon magnetic monopole
(or monopole dipole), in a separate manner. By condens-
ing different subsets of those electric or magnetic particles
with restricted mobility along a line or within a plane, the
authors phenomenologically map the problem into the prob-
lem of stacking 2D CFT or stacking 1D CFT wires, subject
to generic coupling. They discuss the relevance of the inter-
CFT coupling to draw conclusion for the stability of the crit-
ical points or gapless intermediate phases, qualitatively con-
sistent with earlier Monte Carlo calculations in the Appendix
of Ref. [34]. A more recent Ref. [39] also performs system-
atic study into the subdimensional criticality by imposing the
organizing principle of subsystem symmetry breaking, which
can describe various types of quantum phase transitions in-
volving fracton physics. The confinement transition of Z2

XC was numerically confirmed to be a first-order transition in
the stochastic series expansion (SSE) calculations as shown
in supplemental material in Ref. [35]. A similar conclu-

sion was also drawn by a perturbative analytical study using
the perturbative-continuous-unitary-transformation method in
Fig. 12 and Fig. 27 of Ref. [36], where the authors performed
series expansion up to about eighth order from the deconfined
limit and the confined limit, for the ground state energy as
well as the monopole mass gap in the phase diagram. The ana-
lytic perturbative approach was also employed in the Ref. [37]
to pin the location of transition point. In a more recent pa-
per the authors also use the same series expansion method to
study a phase diagram of directly interpolating the Hamilto-
nian between the 3D toric code and X cube model [40], by
tuning the coupling constant of the XC inplane star and cube
stabilizer terms from a TC phase. Although their phase dia-
gram also consists of both 3D TC and XC phases, bearing cer-
tain similarity to our phase diagram, the nature of their phase
transitions are qualitatively sharply distinct from ours: by di-
rectly tuning the inplane star stabilizer terms Â+, the authors
therein are essentially tuning the rest mass of a monopole in
XC phase; likewise, tuning the cube stabilizer terms∏l∈ � σx

l

is equivalent to tuning the rest mass of a fracton defect. This
view also holds near the TC phase if one interpret the electric
string turning point as a monopole, and the resonant state of
an electric charge octupole around an elementary cube satis-
fying ∏l∈ � σx

l = −1 as a fracton. Viewed in the basis of the
topological defects, such tuning parameter couples to the on-
site diagonal mass for a given single topological defect, which
explains the first order transition found by the authors [40]. In
contrast, the gauge fluctuations are interactions between topo-
logical defects at different locations, such as the pair annihi-
lation of the monopoles from adjacent vertices, or the loop
fluctuation of the magnetic flux penetrating different faces.

To summarize, in this paper we mainly discuss the con-
finement transition due to pure gauge fluctuations: the vector-
gauge magnetic flux loop fluctuation together with the tensor-
gauge magnetic monopole fluctuation. Compared with the
previous Hamiltonian study for the confinement transition,
our paper highlights the wave-function approach with 3D spa-
tial conformal quantum critical points. Moreover, we gener-
alize the study to larger N and embed the fracton order in the
coupled layer construction of 2D topological order. The re-
lation between the Hamiltonian QPT and the wave-function
QPT has been studied for the 2D toric code scenario [63], but
it remains to be explored for the 3D fracton scenario when
going to large N , for which the continuous field theory at the
gapped fixed point is already rather nonstandard let alone the
critical point. Our exact 3D iPEPS wave function serves as
a good starting point for further optimization to minimize the
energy of a 3D quantum Hamiltonian [73], which is a promis-
ing route to study this more exotic connection between the
wave function criticality and the Hamiltonian criticality.
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