Haupttitel:
                
On the generators of quantum dynamical semigroups with invariant subalgebras
Autor*in:
                
Hasenöhrl, Markus; Caro, Matthias C.
Datum der Freigabe:
                
2024-03-22T13:20:28Z
Abstract:
                
The problem of characterizing GKLS-generators and CP-maps with an invariant von Neumann algebra A appeared in different guises in the literature. We prove two unifying results, which hold even for weakly closed *-algebras: first, we show how to construct a normal form for A-invariant GKLS-generators, if a normal form for A-invariant CP-maps is known — rendering the two problems essentially equivalent. Second, we provide a normal form for A-invariant CP-maps if A is atomic (which includes the finite-dimensional case). As an application we reproduce several results from the literature as direct consequences of our characterizations and thereby point out connections between different fields.
Teil des Identifiers:
                
ISSN (print): 1793-7191
e-ISSN (online): 1793-7191
Freie Schlagwörter:
                
pen quantum systems
quantum dynamical semigroups
semicausal channels
DDC-Klassifikation:
                
539 Moderne Physik
Publikationstyp:
                
Wissenschaftlicher Artikel
Jahrgang/Volume:
                
30 (2022)
Zeitschrift:
                
Open systems & information dynamics
Fachbereich/Einrichtung:
                
Physik
Institut für Theoretische Physik
Anmerkungen:
                
Electronic version of an article published asOpen Systems & Information DynamicsVol. 30, No. 01, 2350001 (2023), 10.1142/S1230161223500014 © 2024 World Scientific Publishing Co Pte Ltd ; https://www.worldscientific.com/doi/10.1142/S1230161223500014