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Abstract. The problem of characterizing GKLS-generators and CP-maps with an invariant
appeared in different guises in the literature. We prove two unifying results which hold even for
weakly closed *-algebras: First, we show how to construct a normal form for A-invariant GKLS-
generators, if a normal form for A-invariant CP-maps is known — rendering the two problems
essentially equivalent. Second, we provide a normal form for A-invariant CP-maps if A is atomic
(which includes the finite-dimensional case). As an application we reproduce several results from
the literature as direct consequences of our characterizations and thereby point out connections
between different fields.

1. Introduction

Quantum dynamical semigroups play in important role in many areas of physics.
A (norm-continuous) quantum dynamical semigroup is a collection of normal com-
pletely positive maps (Tt)t≥0 on L(H) such that T0 = id, Ts+t = Ts ◦ Tt for all
s, t ≥ 0 and the map t 7→ Tt is norm-continuous. By the general theory of contin-
uous one-parameter semigroups [10, Theorem 3.7], there exists a bounded operator
L, called generator, such that Tt = etL for all t ≥ 0. The fundamental result due
to Gorini, Kossakowski, Sudarshan [13] and Lindblad [18] is that L generates a
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norm-continuous quantum dynamical semigroup if and only if L is of the form

L(X) = V †(X ⊗ 1E)V −K†X −XK, X ∈ L(H), (1)

for some V ∈ L(H;H⊗HE) and K ∈ L(H).
In the past, special cases of the following question on restricted GKLS-generators

arose in the literature: Suppose A ⊆ L(H) is a von Neumann algebra, or more gen-
erally a weakly closed *-algebra1, such that Tt(A) ⊆ A for all t ≥ 0 or, equivalently,
such that L(A) ⊆ A. How does this condition constrain the operators V and K?
In this work, we provide an answer to this question, if A is atomic — thus covering
many interesting cases, in particular the finite-dimensional case. It should be noted
here that Tt(A) ⊆ A for all t ≥ 0 is equivalent to L(A) ⊆ A.

Among the results for which the answer to the question posed above is useful
are: The Koashi-Imoto theorem [17], an important result in the theory of quantum
communication, giving the general form of a quantum channel leaving a certain
set of density matrices invariant; the form of the GKLS-generator imposed by the
invariance of the decoherence-free subalgebra [1, 8, 11, 25]; general questions about
decoherence, where the form of the GKLS-generator imposed by the invariance of
a maximally abelian subalgebra is important [5, 12,22–24]; the study of Markovian
subsystems [27] and the study of the aging process of quantum devices via dynamical
semigroups of superchannels [14].

This paper is structured as follows: In Section 2., we introduce the notation and
remind the reader of several facts related to completely positive (CP) maps, GKLS-
generators, and weakly closed *-algebras. In Section 3.1., we show how to reduce
the general problem of classifying GKLS-generators with an invariant approximately
finite-dimensional algebra to the one of classifying normal CP-maps with the same
invariant algebra. In Section 3.2. we classify normal completely positive maps
with an invariant atomic algebra. Section 3.3. combines the results from Sections
3.1. and 3.2. to obtain a classification of GKLS-generators with invariant atomic
algebras. In Section 4., we use our results to reproduce several results from the
literature discussed above. Finally, in Section 5., we conclude our work and outline
possible further lines of research.

2. Preliminaries and Notation

Functional analysis: Throughout, H (with some subscript) denotes a separable
complex Hilbert space. For Banach spaces X and Y, we denote by L(X ;Y) the
set of bounded linear operators from X to Y, which becomes a Banach space when

1A weakly closed *-algebra can be characterized as a von Neumann algebra with support only
on a subspace. It therefore consists of a von Neumann algebra and a null part. As the step from
von Neumann algebras to weakly closed *-algebras is not always obvious in our results, we include
the null part throughout for completeness.
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equipped with the operator norm. We abbreviate L(X ;X ) by L(X ). The strong
operator topology (SOT) on L(HA;HB) is the smallest topology such that for all
|ψA〉 ∈ HA, the map X 7→ X|ψA〉 is continuous. The weak operator topology (WOT)
on L(HA;HB) is the smallest topology such for all |ψA〉 ∈ HA and |ψB〉 ∈ HB, the map
X 7→ 〈ψB|XψA〉 is continuous. The ultraweak (or weak-*) topology on L(HA;HB)
is the smallest topology such that for all ρ ∈ S1(HB ;HA), the map X 7→ tr [Xρ]
is continuous. Here, tr denotes the trace and S1(HB ;HA) the set of trace-class

operators, that is those ρ ∈ L(HB;HA) for which tr
[√

ρ†ρ
]

< ∞. A subset T ⊆ H

is total in H if its linear span is dense in H. An operator V ∈ L(HA;HB) is called an
isometry if ‖V |ψ〉‖ = ‖|ψ〉‖ for all |ψ〉 ∈ HA. A surjective isometry is called unitary.

CP-maps and GKLS-generators: A linear map Φ : L(HA) → L(HB) is a nor-
mal CP-map if there exists a Hilbert space HE and an operator V ∈ L(HB;HA⊗HE)
such that Φ(X) = V †(X ⊗ 1E)V . We denote the set of such normal CP-maps by
CPσ(HA;HB) and abbreviate CPσ(H;H) by CPσ(H). The pair (V,HE) is called
a Stinespring representation of Φ. An equivalent characterization of normal CP-
map is that they admit a Kraus representation. That is, there exist operators
{vi}i ⊂ L(H) such that Φ(X) =

∑

i v
†
iXvi for all X ∈ L(H), where the series is

SOT-convergent. The choice of (V,HE) representing Φ is not unique. However, the
following well-known theorem (see e.g. [20, Theorem 29.6]) quantifies the freedom.

THEOREM 1. Let Ṽ ∈ L(HB;HA ⊗ H
Ẽ
) and define Φ(X) = Ṽ †(X ⊗ 1

Ẽ
)Ṽ for all

X ∈ L(HA). Then there exist HE and V ∈ L(HB;HA ⊗ HE) such that a) Φ(X) =
V †(X⊗1E)V for all X ∈ L(HA) and such that b) {(X⊗1E)V |ψ〉 |X ∈ L(HA), |ψ〉 ∈
HB} is total in HA ⊗HE.
If (HE, V ) is any pair such that a) and b) are satisfied, and if (H

Ẽ
, Ṽ ) is another

pair such that a) is satisfied, then there exists an isometry W ∈ L(HE;HẼ
) such that

Ṽ = (1A ⊗W )V . If b) is also satisfied for (H
Ẽ
, Ṽ ), then W is unitary.

If V satisfies condition b) above, then it is called minimal.
A linear map L : L(H) → L(H) is called GKLS-generator (or generator in

GKLS-form) if there exists Φ ∈ CPσ(H) and K ∈ L(H), such that L(X) = Φ(X)−
K†X − XK for all X ∈ L(X ). As for normal CP-maps, the representation is not
unique. The following characterization of the freedom can be extracted from [20,
Chapter 30], in particular from the proof of Proposition 30.14. We give a complete
proof in Appendix B.

THEOREM 2. Let Ṽ ∈ L(H;H⊗H
Ẽ
) and K̃ ∈ L(H) and define L(X) = Ṽ †(X ⊗

1
Ẽ
)Ṽ − K̃†X −XK̃ for all X ∈ L(H). Then there exist HE, V ∈ L(H;H⊗HE) and

K ∈ L(H) such that a) L(X) = V †(X ⊗ 1E)V −K†X −XK for all X ∈ L(H) and
such that b) {((X ⊗ 1E)V − V X)|ψ〉 |X ∈ L(H), |ψ〉 ∈ H} is total in H⊗HE.
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If (HE, V,K) is any triplet such that a) and b) are satisfied, and if (H
Ẽ
, Ṽ , K̃) is an-

other triplet such that a) is satisfied, then there exists an isometry W ∈ L(HE;HẼ
),

a vector |ψ̃〉 ∈ H
Ẽ
, and a number µ ∈ R such that

Ṽ = (1⊗W )V + 1⊗ |ψ̃〉, K̃ = K + (1⊗ 〈ψ̃|W )V +
1

2
‖ψ̃‖2 + iµ. (2)

If b) is also satisfied for (H
Ẽ
, Ṽ , K̃), then W is unitary.

Weakly closed *-algebras: We introduce several conventions that will be useful
in simplifying the notation throughout. A weakly closed *-algebra A ⊆ L(H) is
a subalgebra of L(H) that is closed w.r.t. the WOT1 and w.r.t. taking adjoints.
A weakly closed *-algebra does not necessarily contain the identity — if it does
then it is called a von Neumann-algebra (abbr. vN-algebra). Every weakly closed
*-algebra A is (unitarily equivalent to) the direct sum of a zero-dimensional algebra

00 and a vN-Algebra [15, Proposition 5.1.8]. That is, A = UA (00 ⊕A0)U
†
A, where

UA : H⊕ → H is a unitary on H⊕ = H0 ⊕ H0, 00 = {0} ⊆ L(H0) and A0 is a
vN-algebra in L(H0). If P⊕

0 ∈ L(H⊕;H0) and P
⊕
0

∈ L(H⊕;H0) are the orthogonal
projections onto H0 and H0, then we define P0 ∈ L(H;H0) and P0 ∈ L(H;H0) by

P0 = P⊕
0 U

†
A and P0 = P⊕

0
U

†
A.

Two special types of weakly closed *-algebras are of particular importance to us:
the approximately finite-dimensional ones and the atomic ones. A weakly closed *-
algebra A ⊆ L(H) is called approximately finite-dimensional (AFD) if there exists
an increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ A of finite-dimensional (hence
weakly closed) sub-*-algebras of A such that ∪n∈NAn is WOT-dense in A. Atomic
weakly closed *-algebras are usually defined by the requirement that every non-zero
projection in A majorizes a non-zero minimal projection [26, Definition 5.9] — a
property always fulfilled in finite dimensions. For our purposes, it is more convenient
to think of them as those weakly closed *-algebras that are the direct sum of type-I
factors. A proof of this equivalence can be found in the appendix of [8].

DEFINITION 3. A weakly closed *-algebra A ⊆ L(H) is called atomic if

A = UA

(

00 ⊕
⊕

i∈I

(L(HAi
)⊗ 1Bi)

)

U
†
A, (3)

for a Hilbert space H0, sequences of Hilbert spaces {HAi
}i∈I and {HBi

}i∈I indexed
by a countable index set I, and a unitary UA : H⊕ → H, where H⊕ = H0 ⊕
⊕

i∈I(HAi
⊗HBi

).
We further define for all i ∈ I the Hilbert space Hi = HAi

⊗ HBi
. For all

k ∈ I ∪ {0}, let P⊕
k ∈ L(H⊕;Hk) be the orthogonal projection onto Hk and let us

1Equivalently, one can use the SOT or the ultraweak topology.
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define Pk ∈ L(H;Hk) as Pk = P⊕
k U

†
A.

2 Hence, an arbitrary element XA ∈ A can be

written as SOT-convergent series XA =
∑

i∈I P
†
i (XAi

⊗ 1Bi)Pi, for some operators
XAi

∈ L(HAi
), with supi∈I ‖XAi

‖ <∞.

For A ⊆ L(H), we denote by A′ := {X ∈ L(H) |XXA = XAX, ∀XA ∈ A} its
commutant. If A is an atomic weakly closed *-algebra with decomposition given
above, then as a special case of general theory of direct integral decompositions of
vN-algebras (see e.g. [16, Proposition 14.1.24, Theorem 11.2.16])), A′ is given by

A′ = UA

(

L(H0)⊕
⊕

i∈I

(1Ai ⊗ L(HBi
))

)

U
†
A. (4)

Hence, an arbitrary element X ′
A ∈ A′ can be written as SOT-convergent series

XA′ = P
†
0X0P0 +

∑

i∈I P
†
i (1Ai ⊗XBi

)Pi, for some operators X0 ∈ L(H0) and XBi
∈

L(HBi
), with supi∈I ‖XBi

‖ < ∞. And XA′ is self-adjoint if and only if all the
operators in the decomposition are self-adjoint [16, Proposition 14.1.8].

3. Results

3.1. GKLS-generators with invariant *-algebra

In this section we state and prove our first main result, namely a theorem that
allows us to reduce the problem of characterizing GKLS-generators with invariant
weakly closed *-algebras to characterizing CP-maps with invariant weakly closed
*-algebras. Since CP-maps are special GKLS-generators (for K = 0), this renders
these problems essentially equivalent. For technical reasons, we need to restrict our-
selves to AFD algebras. The notation in the following theorem and the subsequent
proof follows Section 2..

THEOREM 4. Let L : L(H) → L(H) be defined by L(X) = Φ(X) −K†X −XK,
for some Φ ∈ CPσ(H) and K ∈ L(H), and let A ⊆ L(H) be an AFD weakly closed
*-algebra. The following are equivalent

1. L(A) ⊆ A.

2. (Stinespring) Suppose Φ is given in Stinespring representation Φ(X) = V †(X⊗
1E)V , where V ∈ L(H;H ⊗HE). Then there exist operators V0 ∈ L(H;H0 ⊗
HE), A,B ∈ L(H;H ⊗HE) and K0 ∈ L(H;H0); an operator KA ∈ A; and a
self-adjoint operator HA′ ∈ A′ such that

(a) A†(XA ⊗ 1E)A ∈ A and (XA ⊗ 1E)B = BXA, for all XA ∈ A.

2Note that this definition is consistent with the one introduced in the first paragraph above.
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(b) V and K have the following form:

V = (P †
0 ⊗ 1E)V0 +A+B, (5a)

K = B†A+
1

2
B†B +KA + iHA′ + P

†
0K0. (5b)

3. (Kraus) Suppose Φ is given in Kraus representation Φ(X) =
∑

n∈N φ
†
nXφn.

Then there exists a countable index set N ; collections of operators {vn}n∈N ⊂

L(H;H0) and {an}n∈N , {bn}n∈N ⊂ L(H) such that
∑

n∈N v
†
nvn,

∑

n∈N a
†
nan

and
∑

n∈N b
†
jbj SOT-converge; an operator K0 ∈ L(H;H0); an operator KA ∈

A; and a self-adjoint operator HA′ ∈ A′ such that

(a)
∑

n∈N a
†
nXAan ∈ A for all XA ∈ A and bn ∈ A′ for all n ∈ N .

(b) {φn}n∈N and K have the following form:

φn = P
†
0vn + an + bn, for all n ∈ N, (6a)

K =
∑

n∈N

b†nan +
1

2

∑

n∈N

b†nbn +KA + iHA′ + P
†
0K0. (6b)

Remark. If we take XA ∈ A, then a simple calculation (done in the first part of
the proof) shows that

L(XA) = A†(XA ⊗ 1E)A−K
†
AXA −XAKA.

This is the generator of a quantum dynamical semigroup on A and has the general
form found by Christensen and Evans [7, Theorem 3.1]. Since the operators A and
KA specify a generator on the subalgebra, the operators B, K0, and HA′ determine
a specific one among the possible extensions of such a generator to all of L(H). Note

that if A is a von Neumann algebra, then the form simplifies since the term P
†
0K0

does not appear.

Proof. We prove 1 ⇐⇒ 2 and obtain 3 as a corollary. For the implication 2 =⇒
1, let XA ∈ A be arbitrary. We have

Φ(XA) = (V †
0 (P0 ⊗ 1E) +A† +B†)(XA ⊗ 1E)((P

†
0 ⊗ 1E)V0 +A+B)

P0XA=0=XAP
†
0= (A† +B†)(XA ⊗ 1E)(A+B)

(XA⊗1E)B=BXA
= A†(XA ⊗ 1E)A+ (B†A+

1

2
B†B)†XA +XA(B

†A+
1

2
B†B)



7

and

K†XA +XAK = (B†A+
1

2
B†B)†XA +XA(B

†A+
1

2
B†B) +K

†
AXA +XAKA

− iHA′XA + iXAHA′
︸ ︷︷ ︸

=0, since HA′∈A′

+ K
†
0P0XA +XAP

†
0K0

︸ ︷︷ ︸

=0, since P0XA=0=XAP
†
0

.

Combining the calculations above yields

L(XA) = A†(XA ⊗ 1E)A−K
†
AXA −XAKA,

which belongs to A since by assumption A†(XA⊗1E)A ∈ A, KA ∈ A and K†
A ∈ A.

The proof of the converse proceeds in two main steps: First we show that there are
operators V0, A and B such that the conditions in 2a and Eq. (5a) hold. Second,
we derive the form of K. As a first step, we construct a family of linear maps on
L(H) each of which is closely related to L and leaves A invariant. Since L(A) ⊆ A,
and since A is a *-algebra,

Ψ(X,Y,Z) := L(Y †XZ)− Y †L(XZ)− L(Y †X)Z + Y †L(X)Z (7)

is an element of A whenever X,Y,Z ∈ A. A direct calculation using the represen-
tation Φ(X) = V †(X ⊗ 1E)V reveals that

Ψ(X,Y,Z) = [V Y − (Y ⊗ 1E)V ]† (X ⊗ 1E) [(V Z − (Z ⊗ 1E)V ] . (8)

With the notation introduced in Section 2.: Since A is AFD, so is U †
AAUA = 00⊕A0

and so is the vN-algebra A0 ⊆ L(H0). Let Ã1 ⊆ Ã2 ⊆ Ã3 ⊆ · · · be an increasing
sequence of finite-dimensional *-subalgebras of A0, such that ∪n∈NÃn is WOT-dense
in A0. For every n ∈ N, define An := span{Ãn ∪ C10}. Clearly, also ∪n∈NAn is
WOT-dense in A0, but now An is a vN-algebra for every n ∈ N. In the following,
we will often need to assign to operators in A0 the corresponding ones in A. For

notational convenience, we define for each X ∈ A0 the operator X̂ = P
†
0
XP0 ∈

L(H). We denote by U(An) the unitary group in An. As An is finite-dimensional,
U(An) is a compact group, so there exists a unique Haar probability measure on
U(An). For any n,m ∈ N and X ∈ L(H), we obtain the following Haar average

∫

U(Am)

∫

U(An)
Ψ(ÛnXŴ

†
m, Û

†
n, Ŵm) dUndWm

=
(
(1̂0 ⊗ 1E)V − En(V )

)†
(X ⊗ 1E)

(
(1̂0 ⊗ 1E)V − Em(V )

)
,

(9)

where

Ek(V ) :=

∫

U(Ak)
(Û †

k ⊗ 1E)V Ûk dUk, k ∈ N.
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Since we integrate over a probability measure, ‖Ek(V )‖ ≤ ‖V ‖ and hence the (se-
quential) Banach–Alaoglu theorem implies that the sequence (Ek(V ))k∈N has an
ultraweakly convergent subsequence whose limit we denote by E(V ). For XA ∈ A,
the RHS of Eq. (9) is an element of A for all n,m ∈ N, since the integrand is in A
and the Bochner integral converges in norm. Furthermore, since A is ultraweakly
closed, passing to subsequences and taking the limit n→ ∞ and then m→ ∞ yields
that

Ψ(XA) :=
(
(1̂0 ⊗ 1E)V − E(V )

)†
(XA ⊗ 1E)

(
(1̂0 ⊗ 1E)V − E(V )

)
(10)

is an element of A for all XA ∈ A. In other words, Ψ interpreted as a CP-map
satisfies Ψ(A) ⊆ A. We now define V0, B and A as follows: V0 = (P0 ⊗ 1E)V ,

B = E(V ) and A = V − (P †
0 ⊗ 1E)V0 − B. Thus V = A + B + (P †

0 ⊗ 1E)V , which
is precisely Eq. (5a). It follows directly from Eq. (10) that A†(XA ⊗ 1E)A ∈ A
for all XA ∈ A — verifying the first part of condition 2a. By the definition of
the Haar measure and since (Ak)k∈N is an increasing sequence, we have (Ûk ⊗
1E)E(V ) = E(V )Ûk for all Uk ∈ U(Ak). But since every Xk ∈ Ak can be written as
a finite linear combination of elements in U(Ak) (see [15, Theorem 4.1.7]), we have
(X̂k ⊗ 1E)E(V ) = E(V )X̂k, for all Xk ∈ Ak and hence (X̂ ⊗ 1E)E(V ) = E(V )X̂ for
all X ∈ ∪n∈NAn. Evidently, this equation is also preserved under ultraweak limits.
Thus (XA ⊗1E)E(V ) = E(V )XA, for all XA ∈ A. Since B = E(V ), this implies the
second part of condition 2a.

It remains to show that K has the desired form. To this end, note that for any
XA ∈ A, we have L(XA) ∈ A by assumption, but since V = (P †

0 ⊗ 1E)V0 + A+B,
(XA ⊗ 1E)B = BXA and P0XA = 0, we also have

L(XA) = [A+B]† (XA ⊗ 1E) [A+B]−K†XA −XAK

= A†(XA ⊗ 1E)A− (K −B†A−
1

2
B†B)†XA −XA(K −B†A−

1

2
B†B).

Since A†(XA ⊗ 1E)A ∈ A, this implies that

−κ†XA −XAκ ∈ A, (11)

for all XA ∈ A, where κ = K−B†A− 1
2B

†B. For Un ∈ U(An), we choose XA = Ûn,

multiply Eq. (11) from the left by Û †
n and integrate over the Haar measure. Thus,

we see that

−

∫

U(An)
Û †
nκÛn dUn − 1̂0κ (12)

belongs to A. By the same arguments as above, we can pass to a subsequence such
that for n→ ∞, expression Eq. (12) converges to

−κA′ − 1̂0κ, (13)
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for some κA′ ∈ A′ and such that the whole expression belongs to A. We now
define the self-adjoint operator HA′ = − 1

2i(κA′ − κ
†
A′) ∈ A′, the operator KA :=

1̂0κ − iHA′ = κ − P
†
0P0κ − iHA′ and K0 = P0κ. By the definition of K0 and KA

we thus get κ = KA + iHA′ +P
†
0K0, which is the desired form if KA ∈ A. This last

assertion can be seen as follows:

KA =
1

2

(

KA +K
†
A

)

+
1

2

(

KA −K
†
A

)

=
1

2

(

κ†1̂0 + 1̂0κ
)

︸ ︷︷ ︸

∈A, by 1̂0∈A and Eq. (11)

+
1

2

(

(1̂0κ+ κA′)
︸ ︷︷ ︸

∈A, by Eq. (13)

− (1̂0κ+ κA′)†
︸ ︷︷ ︸

∈A, by Eq. (13)

)

.

This finishes the proof of 1 ⇐⇒ 2.
Part 3 is a matter of going from the Stinespring representation of normal CP-

maps to their Kraus representation and back. This is a standard procedure and a
very nice account can be found in [3]. We just mention here that after choosing an
orthonormal basis {|en〉}n∈N of HE, the collections {vn}n∈N , {an}n∈N and {bn}n∈N
and the operators V0, A and B are related via vn := (1 ⊗ 〈en|)V0, an := (1 ⊗
〈en|)A and bn := (1 ⊗ 〈en|)B. The corresponding properties are then routinely
verifiable.

3.2. CP-maps with invariant atomic algebra

In this section, we study the problem of finding a normal form for (normal) CP-
maps with an atomic invariant subalgebra. Slightly more generally, we aim to find
normal a normal form for normal CP-maps Φ with the property that Φ(A) ⊆ C,
for two atomic weakly closed *-algebras A and C. Since we are now dealing with
two algebras, we need to distinguish them in the notation in Definition 3. For the
algebra A ⊆ L(HA): the index set is called I; the Hilbert spaces {Hi}i∈I∪{0} are
denoted by Hi:A, with Hi:A = HAi

⊗ HBi
(i ∈ I); and the operators Pi are called

Pi:A ∈ L(HA;Hi:A). For the algebra C ⊆ L(HC): the index set is called J ; the
Hilbert spaces {Hj}j∈J∪{0} are denoted by Hj:C, with Hj:C = HCj

⊗ HDj
(j ∈ J);

and the operators Pj are called Pj:C ∈ L(HC ;Hj:C). With this notation in place, we
can state our second main result:

THEOREM 5. Let A ⊆ L(HA) and C ⊆ L(HC) be two atomic weakly closed *-
algebras. For Φ ∈ CPσ(HA;HC) defined by Φ(X) = V †(X ⊗ 1E)V , with V ∈
L(HC ;HA ⊗HE), the following are equivalent

1. Φ(A) ⊆ C.

2. There exist an operator V0 ∈ L(HC ;H0:A ⊗HE); and for all i ∈ I and j ∈ J

Hilbert spaces HFij
, operators Aij ∈ L(HCj

;HAi
⊗HFij

), and isometries Uij ∈
L(HFij

⊗HDj
;HBi

⊗HE), such that
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• V can be decomposed as

V = (P †
0:A ⊗ 1E)V0 +

∑

i∈I, j∈J

(P †
i:A ⊗ 1E)VijPj:C , (14)

with Vij = (1Ai ⊗ Uij)(Aij ⊗ 1Dj), s.t. the series SOT-converges.

• The relation U
†
ikUil = δkl1 holds for all i ∈ I and k, l ∈ J .

The representation in 2 can be chosen such that {(X⊗1Fij )Aij |ψ〉 |X ∈ L(HAi
), |ψ〉 ∈

HCj
} is total in HAi

⊗HFij
.

Remark. The theorem above tells us that if V is written as a block matrix (w.r.t.
a basis determined by the structure of A and C), then all the blocks are necessarily
of the “semilocalizable” form (1⊗U)(A⊗1) — and that the U ’s need to satisfy an
orthogonality relation.

Proof. Let us start by showing that 2 =⇒ 1. We know that XA ∈ A if and
only if it can be decomposed as SOT-convergent series XA =

∑

i∈I P
†
i:A(XAi

⊗
1Bi)Pi:A, for XAi

∈ L(HAi
) with

∑

i∈I ‖XAi
‖ < ∞. Since A and C are ultra-

weakly closed, Φ is ultraweakly continuous, and the operators in AF := {XA |XAi
6=

0 only for finitely many i ∈ I } are ultraweakly dense in A, it suffices to show the
claim for XA ∈ AF so that convergence issues (w.r.t. the I-summation) play no role
in the following calculation (where the J-summation SOT-converges):

Φ(XA) =
∑

i∈I

[(Pi:A ⊗ 1E)V ]† (XAi
⊗ 1Bi ⊗ 1E) [(Pi:A ⊗ 1E)V ]

=
∑

i∈I

∑

k,l∈J

P
†
k:CV

†
ik(XAi

⊗ 1Bi ⊗ 1E)VilPl:C

=
∑

i∈I

∑

k,l∈J

P
†
k:C(A

†
ik ⊗ 1Dk)(XAi

⊗ U
†
ikUil)(Ail ⊗ 1Dl)Pl:C

=
∑

i∈I

∑

j∈J

P
†
j:C(A

†
ij ⊗ 1Dj)(XAi

⊗ 1Fij ⊗ 1Dj)(Aij ⊗ 1Dj )Pj:C

=
∑

j∈J

P
†
j:C

[(
∑

i∈I

A
†
ij(XAi

⊗ 1Fij )Aij

)

⊗ 1Dj

]

Pj:C,

where we used the expansion of XA in the first line, Eq. (14) in the second line
(in particular the orthogonality of the projections), the explicit form Vij = (1Ai ⊗

Uij)(Aij ⊗ 1Dj) in the third line, the orthogonality relation U
†
ikUil = δkl1 in the

fourth line and algebraic manipulations in the fifth line. But the last line is just the
decomposed form of an element of C. Thus we have shown that Φ(A) ⊆ C.
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For the converse, suppose that Φ, defined by Φ(X) = V †(X ⊗ 1E)V satisfies

Φ(A) ⊆ C. Let I0 = I ∪ {0} and J0 = J ∪ {0}. Then
∑

i0∈I0
P

†
i0:A

Pi0:A = 1A and
∑

j0∈J0
P

†
j0:C

Pj0:C = 1C , where the series SOT-converge. Hence, we can expand

V = (P †
0:A ⊗ 1E)V0 +

∑

i∈I

(P †
i:A ⊗ 1E)Vi0P0:C +

∑

i∈I,j∈J

(P †
i:A ⊗ 1E)VijPj:C , (15)

where we defined V0 = (P0:A ⊗ 1E)V and for all i ∈ I and j0 ∈ J0 the operator

Vij0 = (Pi:A⊗1E)V P
†
j0:C

. Thus it remains to show that Vi0 = 0 and that Vij has our
specific form.

By definition, every XC ∈ C is of the form XC =
∑

j∈J P
†
j:C(XCj

⊗1Dj)Pj:C . Thus,
in particular Φ(XA) assumes that form for all XA ∈ A. This has the following three
implications: First, for every i ∈ I, j ∈ J and every XAi

∈ L(HAi
), there exists

XCj
∈ L(HCj

) such that

Pj:CΦ
(

P
†
i:A(XAi

⊗ 1Bi)Pi:A

)

P
†
j:C = V

†
ij(XAi

⊗ 1Bi ⊗ 1E)Vij = XCj
⊗ 1Dj . (16)

Second, for every i ∈ I and XAi
∈ L(HAi

), we have

P0:C Φ
(

P
†
i:A(XAi

⊗ 1Bi)Pi:A

)

P
†
0:C = V

†
i0(XAi

⊗ 1Bi ⊗ 1E)Vi0 = 0. (17)

Third, for every i ∈ I and k, l ∈ J with k 6= l and all XAi
∈ L(HAi

), we have

Pk:C Φ
(

P
†
i:A(XAi

⊗ 1Bi)Pi:A

)

P
†
l:C = V

†
ik(XAi

⊗ 1Bi ⊗ 1E)Vil = 0. (18)

It is a direct consequence of Eq. (17), by choosing XAi
= 1Ai , that Vi0 = 0 for

all i ∈ I. Hence the second term in Eq. (15) vanishes as desired.
We will now see that Eq. (16) implies that Vij = (1 ⊗ Uij)(Aij ⊗ 1). This

is due to the equivalence between semicausal and semilocalizable CP-maps, estab-
lished for finite-dimensional systems in [9]. We reproduce the argument here for
the infinite-dimensional case. Choose some unit vector |ψ〉 ∈ HDj

and define the
normal CP-maps Φij ∈ CPσ(Hi:A;Hj:C) and Ψij ∈ CPσ(HAi

;HCj
) by Φij(Xi) =

Pj:CΦ
(

P
†
i:AXiPi:A

)

P
†
j:C and Ψij(XAi

) = (1Cj⊗〈ψ|)Φij(XAi
⊗1Bi)(1Cj⊗|ψ〉). Eq. (16)

then implies that

Φij(XAi
⊗ 1Bi) = Ψij(XAi

)⊗ 1Dj , (19)

for all XAi
∈ L(HAi

). By Stinespring’s dilation theorem (see Theorem 1), there
exists a minimal dilation given by HFij

and Aij ∈ L(HCj
;HAi

⊗ HFij
) such that

Ψij(XAi
) = A

†
ij(XAi

⊗ 1Fij )Aij . It follows that Aij ⊗ 1Dj is a minimal dilation for
XAi

7→ Ψij(XAi
)⊗ 1Dj . But Eqs. (19) and (16) then imply that

V
†
ij(XAi

⊗ 1Bi ⊗ 1E)Vij = (Aij ⊗ 1Dj )
†(XAi

⊗ 1Fij ⊗ 1Dj )(Aij ⊗ 1Dj ), (20)
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for all XAi
∈ L(HAi

). In other words, Vij and Aij ⊗ 1Dj are Stinespring operators of
the same map. Since Aij ⊗ 1Dj is minimal, there exists an isometry Uij ∈ L(HFij

⊗
HDj

;HBi
⊗HE) such that Vij = (1Ai ⊗ Uij)(Aij ⊗ 1Dj). This is the desired form.

It remains to show that U †
ikUil = δkl1 for all i ∈ I and k, l ∈ J . Since the Uij ’s

are isometries, this condition is fulfilled for k = l. For k 6= l, we choose arbitrary
|ψk〉 ∈ Hk:C and |ψl〉 ∈ Hl:C and XL,XR ∈ L(HAi

). Eq. (18), with XAi
= X

†
LXR

implies

0 = 〈(XL ⊗ 1Bi ⊗ 1E)Vikψk|(XR ⊗ 1Bi ⊗ 1E)Vilψl〉

= 〈(XL ⊗ 1Fik ⊗ 1Dk)(Aik ⊗ 1Dk)ψk|
[

1Ai ⊗ U
†
ikUil

]

(XR ⊗ 1Fil ⊗ 1Dl)(Ail ⊗ 1Dl)ψl〉.

Since {(XL ⊗ 1Fik ⊗ 1Dk)(Aik ⊗ 1Dk)|ψk〉 |XL ∈ L(HAi
), |ψk〉 ∈ Hk:C} being total

and {(XR ⊗ 1Fil ⊗ 1Dl)(Ail ⊗ 1Dl)|ψl〉 |XR ∈ L(HAi
), |ψl〉 ∈ Hl:C} being total is the

definition of minimality of Aik⊗1Dk and Ail⊗1Dl , respectively, we can conclude from

the equation above (using sesquilinearity of the inner product) that 1Ai ⊗U
†
ikUil = 0

and hence that U †
ikUil = 0, as desired. Finally, note that the claim about the

totality of {(X ⊗ 1Fij )Aij |ψ〉 |X ∈ L(HAi
), |ψ〉 ∈ HCj

} in HAi
⊗ HFij

follows by
construction.

3.3. GKLS-generators with invariant atomic algebra

The notation in the following theorem and its proof follows Section 2..

THEOREM 6. Let L : L(H) → L(H) be given by L(X) = V †(X ⊗ 1E)V −K†X −
XK with V ∈ L(H;H⊗HE) and K ∈ L(H) and let A be an atomic *-subalgebra of
L(H), with decomposition given by Definition 3. Then the following are equivalent

1. L(A) ⊆ A.

2. There exist operators V0 ∈ L(H;H0 ⊗HE) and K0 ∈ L(H;H0); for all i, j ∈ I

a Hilbert space HFij
, operators Aij ∈ L(HAj

;HAi
⊗HFij

), and isometries Uij ∈
L(HFij

⊗HBj
;HBi

⊗HE); and for every i ∈ I operators Bi ∈ L(HBi
;HBi

⊗HE),
KAi

∈ L(HAi
), and self-adjoint operators HBi

∈ L(HBi
), such that

• V and K can be decomposed as

V = (P †
0 ⊗ 1E)V0 +

∑

i,j∈I

(P †
i ⊗ 1E)V

sc
ij Pj +

∑

i∈I

(P †
i ⊗ 1E)(1Ai ⊗Bi)Pi,

K =
∑

i∈I

P
†
i (1Ai ⊗B

†
i )V

sc
ii Pi +

1

2

∑

i∈I

P
†
i (1Ai ⊗B

†
iBi)Pi

+KA + iHA′ + P
†
0K0,
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with V sc
ij = (1Ai ⊗ Uij)(Aij ⊗ 1Bj ), KA =

∑

i∈I P
†
i (KAi

⊗ 1Bi)Pi, and

HA′ =
∑

i∈I P
†
i (1Ai ⊗HBi

)Pi, s.t. all series SOT-converge.

• The relation U
†
ikUil = δkl1 holds for all i, k, l ∈ I.

Proof. The basic strategy is to use Theorem 4 to reduce the problem to CP-maps
with invariant algebra A, followed by an application of Theorem 5. In detail: Part
2 of Theorem 4 provides us with operators Ã, B̃, Ṽ0, K̃0, KA and H̃A′ such that

V = (P †
0 ⊗ 1E)Ṽ0 + Ã+ B̃, (21a)

K = B̃†Ã+
1

2
B̃†B̃ +KA + iH̃A′ + P

†
0 K̃0. (21b)

We observe the following:

• Since KA ∈ A, it can be decomposed as KA =
∑

i∈I P
†
i (KAi

⊗ 1Bi)Pi for
operators KAi

∈ L(HAi
).

• Since Φ(XA) := Ã†(XA ⊗ 1E)Ã ∈ A for all XA ∈ A, we can apply Theorem
5, which implies that there exist A0 ∈ L(H;H0 ⊗ HE); and for all i, j ∈ I, a
Hilbert space HFij

, operators Aij ∈ L(HAj
;HAi

⊗ HFij
), and isometries Uij ∈

L(HFij
⊗HBj

;HBi
⊗HE) such that Ã = (P †

0 ⊗ 1E)A0 +
∑

i,j∈I(P
†
i ⊗ 1E)V

sc
ij Pj,

where V sc
ij = (1Ai ⊗ Uij)(Aij ⊗ 1Bj ) and U

†
ikUil = δkl1 for all i, k, l ∈ I.

• Since B̃ satisfies (XA ⊗ 1E)B̃ = B̃XA for all XA ∈ A, a calculation executed
in Lemma 11 shows that there exist B0 ∈ L(H0;H0 ⊗HE) and operators Bi ∈

L(HBi
;HBi

⊗HE) such that B̃ = (P †
0 ⊗1E)B0P0 +

∑

i∈I(P
†
i ⊗1E)(1Ai ⊗Bi)Pi.

• Since H̃A′ ∈ A′, the discussion around Eq. (4) yields that it can be decomposed

as H̃A′ = P
†
0H0P0 +

∑

i∈I P
†
i (1Ai ⊗ HBi

)Pi, for self-adjoint H0 ∈ L(H0) and
HBi

∈ L(HBi
).

Each of the points above provides an explicit representation of the operators in
Eqs. (21a) and (21b). Plugging them in yields

V = (P †
0 ⊗ 1E)Ṽ0 + (P †

0 ⊗ 1E)A0 + (P †
0 ⊗ 1E)B0P0

+
∑

i,j∈I

(P †
i ⊗ 1E)V

sc
ij Pj +

∑

i∈I

(P †
i ⊗ 1E)(1Ai

⊗Bi)Pi,

which has the desired form after defining V0 = Ṽ0 +A0 +B0P0. And

K = P
†
0 K̃0 + P

†
0B

†
0A0P0 +

1

2
P

†
0B

†
0B0P0 + iP

†
0H0P0

+
∑

i∈I

P
†
i (1Ai ⊗B

†
i )V

sc
ii Pi +

1

2

∑

i∈I

P
†
i (1Ai ⊗B

†
iBi)Pi +KA + iHA′ ,

which has the desired form after definingK0 = K̃0+B
†
0A0P0+

1
2B

†
0B0P0+iH0P0.
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The representation in Part 2 of Theorem 6 is not unique. The following theorem
quantifies the freedom in that representation.

THEOREM 7. The operators and spaces in Part 2 of Theorem 6 can be cho-
sen to satisfy the following minimality conditions: a) For all i ∈ I, the set
{(XAi

⊗ 1Fii)Aii −AiiXAi
|ψ〉 |XAi

∈ L(HAi
), |ψ〉 ∈ HAi

} is total in HAi
⊗ HFii

, and
b) the set

{
(XAi

⊗ 1Fij )Aij |ψ〉 |XAi
∈ L(HAi

), |ψ〉 ∈ HAj

}
is total in HAi

⊗ HFij
for

all i, j ∈ I with i 6= j.
Let L : L(H) → L(H) and L̃ : L(H) → L(H) be given by L(X) = V †(X ⊗ 1E)V −
K†X−XK and L̃(X) = Ṽ †(X ⊗1

Ẽ
)Ṽ − K̃†X −XK̃, with V ∈ L(H;H⊗HE), Ṽ ∈

L(H;H⊗H
Ẽ
), and K, K̃ ∈ L(H), and let A be an atomic *-subalgebra of L(H), with

decomposition given by Definition 3. Suppose that L(A) ⊆ A and L̃(A) ⊆ A and let
the corresponding representations (Theorem 6) (V0,K0, {HFij

}, {Uij}, {Aij}, {Bi},

{KAi
}, {HBi

}) and (Ṽ0, K̃0, {HF̃ij
}, {Ũij}, {Ãij}, {B̃i}, {K̃Ai

}, {H̃Bi
}) both satisfy con-

ditions a) and b) above. Then, the following hold:

1. If L(XA) = L̃(XA) for all XA ∈ A, then, for every i ∈ I, there exist a unitary
Wii ∈ L(HFii

;H
F̃ii
), vectors |ψ̃i〉 ∈ H

F̃ii
with supi∈I ‖ψ̃i‖ < ∞, and numbers

µi ∈ R, with supi∈I |µi| < ∞, such that Ãii = (1Ai ⊗Wii)Aii + 1Ai ⊗ |ψ̃i〉 and
K̃Ai

= KAi
+ (1Ai ⊗ 〈ψ̃i|Wii)Aii +

1
2‖ψ̃i‖

2 + iµi. Moreover, for all i, j ∈ I with

i 6= j there exists a unitary Wij ∈ L(HFij
;H

F̃ij
) such that Ãij = (1Ai⊗Wij)Aij .

2. If Ṽ = V and K̃ = K, then Ṽ0 = V0, K̃0 = K0, B̃i = Bi − Uii(|W
†
iiψ̃i〉 ⊗ 1Bi),

and H̃Bi
= HBi

+ i
2 (G−G†)−µi1Bi, where G = B

†
iUii(|W

†
iiψ̃i〉⊗1Bi). Moreover,

for all i, j ∈ I, we have Ũij = Uij(W
†
ij ⊗ 1Bi).

Remark. It is the matter of a straightforward calculation to show that the (si-
multaneous) substitutions in 1 and 2 above leave the operators V and K invariant.
Thus Theorem 7 quantifies exactly the freedom in our representation. Moreover,
Theorem 2 quantifies the freedom in the choice of (HE, V,K).

Proof. We start with proving the possibility of a reduction to minimality, as claimed
in the first part of the theorem. Suppose L is given according to Part 2 of Theorem
6, with data (Ṽ0, K̃0, {HF̃ij

}, {Ũij}, {Ãij}, {B̃i}, {K̃Ai
}, {H̃Bi

}). For any i ∈ I, XAi
∈

L(HAi
), we have PiL(P

†
i (XAi

⊗1Bi)Pi)P
†
i =

[

Ã
†
ii(XAi

⊗ 1
F̃ii
)Ãii − K̃

†
Ai
XAi

−XAi
K̃Ai

]

⊗

1Bi =: L↓
ii(XAi

)⊗1Bi . By Theorem 2, there exists (HFii
, Aii,KAi

) such that L↓
ii(XAi

) =

A
†
ii(XAi

⊗1Fii)Aii−K
†
Ai
XAi

−XAi
KAi

, Aii satisfies condition a), Ãii = (1Ai⊗Wii)Aii+

1Ai ⊗ |ψ̃i〉, and K̃Ai
= KAi

+ (1Ai ⊗ 〈ψ̃i|Wii)Aii +
1
2‖ψ̃i‖

2 + iµi, for an isometry

Wii ∈ L(HFii
;H

F̃ii
), a vector |ψ̃i〉 ∈ H

F̃ii
, and a number µi ∈ R. We define Uii =

Ũii(Wii⊗1Bi), so that Uii is an isometry. Furthermore, we define Bi = B̃i+|ψ̃i〉⊗1Bi
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andHBi
= H̃Bi

+ i
2 (G̃−G̃†)+µi1Bi , where G̃ = B̃

†
i Ũii(|ψ̃i〉⊗1Bi). A direct calculation

shows that replacing the operators with ‘tilde’ by the ones without, does not change
V and K, but now Aii satisfies condition a). The claim that supi∈I ‖ψ̃i‖ < ∞ and
supi∈I |µi| <∞ follows, since L would be unbounded otherwise. For i, j ∈ I with i 6=

j, we have PjL(P
†
i (XAi

⊗1Bi)Pi)P
†
j =

[

Ã
†
ij(XAi

⊗ 1
F̃ij

)Ãij

]

⊗1Bj =: L↓
ij(XAi

)⊗1Bj .

By Theorem 1, there exists (H
F̃ij
, Aij) such that L↓

ij(XAi
) = A

†
ij(XAi

⊗1Fij)Aij , con-

dition b) holds, and Ãij = (1Ai ⊗Wij)Aij , for some isometry Wij ∈ L(HFij
;H

F̃ij
).

We define Uij = Ũij(Wij ⊗ 1Bj). It follows that Uij is an isometry and also that

U
†
ikUil = δkl1. Again, a calculation shows that replacing the operators with ‘tilde’

by the ones without, does not change K and V .
Next, we want to prove 1. Since L(XA) = L̃(XA) for all XA ∈ A, we have

in particular PiL(P
†
i (XAi

⊗ 1Bi)Pi)P
†
i = PiL̃(P

†
i (XAi

⊗ 1Bi)Pi)P
†
i for all i ∈ I.

This is equivalent to A†
ii(XAi

⊗ 1Fii)Aii −K
†
Ai
XAi

−XAi
KAi

= Ã
†
ii(XAi

⊗ 1
F̃ii
)Ãii −

K̃
†
Ai
XAi

−XAi
K̃Ai

. Since a) holds for L and L̃, Theorem 2 implies the existence of

unitaries Wii ∈ L(HFii
;H

F̃ii
), vectors |ψ̃i〉 ∈ H

F̃ii
, and numbers µi ∈ R s.t. Ãii =

(1Ai⊗Wii)Aii+1Ai⊗|ψ̃i〉 and K̃Ai
= KAi

+(1Ai⊗〈ψ̃i|Wii)Aii+
1
2‖ψ̃i‖

2+iµi. The claim

that supi∈I ‖ψ̃i‖ < ∞ and supi∈I |µi| < ∞ follows, since L̃ would be unbounded

otherwise. For i, j ∈ I with i 6= j we have PjL(P
†
i (XAi

⊗1Bi)Pi)P
†
j = PjL̃(P

†
i (XAi

⊗

1Bi)Pi)P
†
j , which is equivalent to A†

ij(XAi
⊗ 1Fij )Aij = Ã

†
ij(XAi

⊗ 1
F̃ij

)Ãij for all

XAi
∈ L(HAi

). Since b) holds for L and L̃, Theorem 1 implies the existence of a
unitary Wij ∈ L(HFij

;H
F̃ij

) s.t. Ãij = (1Ai ⊗Wij)Aij . This is claim 1.

For part 2, we first notice that Ṽ = V and K̃ = K immediately implies (by
projecting into the respective subspace) that Ṽ0 = V0 and K̃0 = K0. Moreover, for
any i ∈ I,

Vii := (1Aii⊗Uii)(Aii⊗1Bii)+1Ai⊗Bi = (1Aii⊗Ũii)(Ãii⊗1Bii)+1Ai⊗B̃i =: Ṽii . (22)

Thus,

(XAi
⊗ 1BiE)Ṽii − Ṽii(XAi

⊗ 1Bi) = (1Ai ⊗ Ũii)([(XAi
⊗ 1

F̃ii
)Ãii − ÃiiXAi

]⊗ 1Bi)

= (1Ai ⊗ (Ũii(Wii ⊗ 1Bi)))([(XAi
⊗ 1Fii)Aii −AiiXAi

]⊗ 1Bi)

= (1Ai ⊗ Uii)([(XAi
⊗ 1Fii)Aii −AiiXAi

]⊗ 1Bi) , (23)

where the second line was obtained by using the relation between Aii and Ãii in
Part 1. From the equality of the last two lines and the totality implied by a), we
conclude Uii = Ũii(Wii ⊗ 1Bi). Using this relation, the relation between Aii and

Ãii, and Eq. (22) yields B̃i = Bi − Uii(|W
†
iiψ̃i〉 ⊗ 1Bi). Moreover, from PiKP

†
i =

(1Ai ⊗ B
†
i )(1Ai ⊗ Uii)(Aii ⊗ 1Bi) +

1
2(1Ai ⊗ B

†
iBi) + (KAi

⊗ 1Bi) + (1Ai ⊗ iHBi
) =
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(1Ai ⊗ B̃
†
i )(1Ai ⊗ Ũii)(Ãii⊗1Bi)+

1
2(1Ai ⊗ B̃

†
i B̃i)+(K̃Ai

⊗1Bi)+(1Ai ⊗ iH̃Bi
) = PiK̃P

†
i

and the already established relations between the operators with and without ’tilde’,
we obtain H̃Bi

= HBi
+ i

2(G − G†) − µi1Bi . Finally, for i, j ∈ I with i 6= j we get

(XAi
⊗1BiE)Vij = (1Ai ⊗Uij)([(XAi

⊗1Fij )Aij ]⊗1Bj ) = (1Ai ⊗ Ũij)([(XAi
⊗1Fij)Ãij ]⊗

1Bj ) = (1Ai ⊗ (Ũij(Wij ⊗ 1Bj)))([(XAi
⊗ 1Fij )Aij ] ⊗ 1Bj ). By the totality condition

b), we can conclude Uij = Ũij(Wij ⊗ 1Bj). Since Wij is unitary, this finishes the
proof.

For later convenience, we also note the following.

COROLLARY 8. Let L : L(H) → L(H) be given by L(X) = −K†X − XK, with
K ∈ L(H), and let A be an atomic *-subalgebra of L(H), with decomposition given
by Definition 3. If L(A) ⊆ A, then we can choose Aij = 0 and Bi = 0, for
all i, j ∈ I in the corresponding representation of Part 2 of Theorem 6. Thus,
K = KA + iHA′ + P

†
0K0.

Proof. If V = 0 andK are given via (V0,K0, {HFij
}, {Uij}, {Aij}, {Bi}, {KAi

}, {HBi
})

such that a) and b) in Theorem 7 hold, 0 = Vij = (Pi ⊗ 1E)V Pj implies (1Ai ⊗
Uij)([(XAi

⊗1Fij)Aij ]⊗1Bj ) = 0 for i 6= j and (1Ai ⊗Uii)([(XAi
⊗1Fii)Aii−AiiXAi

]⊗
1Bi) = 0 for all i ∈ I (compare Eqs. (22) and (23)). Thus by the totality condi-
tions a) and b), we conclude Uij = 0 for all i, j ∈ I, which implies that HFij

is
zero-dimensional. Hence, Aij = 0 and consequently also Bi = 0 for all i ∈ I.

4. Applications

4.1. Semicausal quantum dynamical semigroups

As a first application of our results, we use them to reprove the main result of [14],
namely the characterization of GKLS generators of semicausal quantum dynamical
semigroups, a crucial step towards characterizing the generators of continuous one-
parameter semigroups of quantum superchannels. Here, we call a CP-map Φ :
L(HA ⊗HB) → L(HA ⊗ HB) semicausal if there is a CP-map ΦA : L(HA) → L(HA)
such that Φ(XA ⊗ 1B) = ΦA(XA) ⊗ 1B holds for all XA ∈ L(HA). That is, Φ is
semicausal if and only if Φ(Asc) ⊆ Asc holds for the atomic vN-subalgebra Asc :=
L(HA)⊗ 1B ⊆ L(HA ⊗HB).

Using Theorem 6, we see that a GKLS generator L : L(HA⊗HB) → L(HA⊗HB),
L(X) = V †(X ⊗ 1E)V − K†X − XK, satisfies L(Asc) ⊆ Asc if and only if there
exist a Hilbert space HF, an operator A ∈ L(HA;HA ⊗ HF), and an isometry U ∈
L(HF ⊗ HB;HB ⊗ HE); operators B ∈ L(HB;HB ⊗ HE), KA ∈ L(HA), and a self-
adjoint operator HB ∈ L(HB), such that V = (1A ⊗ U)(A ⊗ 1B) + 1A ⊗ B and
K = (1A ⊗B†U)(A⊗ 1B) +

1
21A ⊗B†B +KA ⊗ 1B + 1A ⊗ iHB. This is exactly [14,

Theorem V.6].
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4.2. Quantum dynamical semigroups with an atomic decoherence-free

subalgebra

For our second application, we first recall that for a uniformly continuous and
unital quantum dynamical semigroup T = (Tt)t≥0 acting on L(H) the decoherence-
free subalgebra N (T ) is the largest vN-subalgebra of L(H) on which every Tt acts
as a ∗-automorphism [11, Theorem 3] or, equivalently, such that Tt(XN (T )) =

eiH̃tXN (T )e
−iH̃t for all XN (T ) ∈ N (T ), where H̃ ∈ L(H) is self-adjoint [11, Propo-

sition 2]. In particular, note that every Tt leaves N (T ) invariant. As shown in [8],
a quantum dynamical semigroup inherits structure from its decoherence-free subal-
gebra. This is the content of the following:

THEOREM 9. [8, Theorem 3.2(1)] Let T and N (T ) be as above, and assume that
N (T ) is atomic, with normal form as in Definition 3. Then, for any GKLS-

generator L, given in Kraus form by L(X) =
∑

n∈N φ
†
nXφn −K†X − XK, where

K = 1
2

∑

n∈N φ
†
nφn + i Im(K), we have

φn =
∑

i∈I

P
†
i (1Ai ⊗ βn;i)Pi, Im(K) =

∑

i∈I

P
†
i (κAi ⊗ 1Bi + 1Ai ⊗ κBi)Pi, (24)

for some βn;i ∈ L(HBi
) and some self-adjoint κAi ∈ L(HAi

) and κBi ∈ L(HBi
).

We can recover Theorem 9 as a special case of our results as follows. By
the characterization of the decoherence-free subalgebra described above, we have
L(XN (T )) = i[H̃,XN (T )] ∈ N (T ) for all XN (T ) ∈ N (T ). Therefore, if we de-

fine L̃(X) := −(iH̃)†X − X(iH̃) for all X ∈ L(H), then Corollary 8 implies H̃ =
∑

i∈I P
†
i (H̃Ai

⊗ 1Bi + 1Ai ⊗ H̃Bi
)Pi for self-adjoint H̃Ai

∈ L(HAi
) and H̃Bi

∈ L(HBi
).

This already provides a normal form representation of L̃ as in Theorem 6, and
the minimality conditions of Theorem 7 are satisfied, since Ãij = 0. Now, if L is
w.l.o.g. also minimal, Part 1 of Theorem 7 (with the roles of the operators with
and without ‘tilde’ interchanged) implies that Aii = 1Ai ⊗ |ψi〉 for some vectors
|ψi〉 ∈ HFii

and that Aij = 0 for i 6= j. On the level of the Kraus operators, this

yields φn = (1⊗〈en|)
(∑

i∈I(P
†
i ⊗1E)(1Ai ⊗Uii(|ψi〉⊗1Bi)+1Ai ⊗Bi)Pi

)
, which has

the desired form with βn;i = (1Bi ⊗ 〈en|)(Uii(|ψi〉 ⊗ 1Bi) + Bi). (Note: If L is not
already minimal, we can first follow the steps in the proof of Theorem 7 to reduce
to a minimal generator and then apply the above reasoning.) Moreover, using the
representation of Theorem 6 and again Part 1 of Theorem 7,

Im(K) =
∑

i∈I

P
†
i

(
Im((1Ai ⊗B

†
iUii)(Aii ⊗ 1Bi)) + Im(KAi

)⊗ 1Bi + 1Ai ⊗HBi

)
Pi

=
∑

i∈I

P
†
i

(
1Ai ⊗ Im(B†

iUii(|ψi〉 ⊗ 1Bi)) + Im(K̃Ai
)⊗ 1Bi + µi + 1Ai ⊗HBi

)
Pi,
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which has the desired form with κAi := Im(K̃Ai
) and κBi := HBi

+ Im(B†
iUii(|ψi〉 ⊗

1Bi)) + µi.
As a final remark on our short discussion of the decoherence-free subalgebra, we

point out that [25, Corollary 21] showed that N (T ) is atomic whenever the quantum
dynamical semigroup T admits a normal faithful invariant state. In many situations
of interest, we can therefore focus on N (T ) being atomic, as in Theorems 6 and 9.

4.3. Quantum dynamical semigroups and CP-maps with an invariant

maximal abelian subalgebra

Our third application is concerned with the following question: Given a maximal
abelian vN-subalgebra C of L(H), that is C′ = C, what is the most general form of
a GKLS-generator that leaves C invariant? According to Theorem 4, we can reduce
the above question to characterizing CP-maps with an invariant maximal abelian
vN-subalgebra. The latter question was previously investigated in [12, 24]. More
precisely, [24, Theorem 1] gave an abstract characterization of such GKLS-generators
in terms of a commutation relation and a sufficient condition on the Kraus operators
of the CP part of the GKLS-generator. Ref. [12] extended these deliberations and,
in particular, gave a necessary and sufficient condition for a normal CP-map to leave
a maximal abelian vN-subalgebra invariant:

THEOREM 10. [12, Corollary 3.4] Let Φ be a normal CP-map on L(H) with Kraus

decomposition Φ(X) =
∑

n∈N φ
†
nXφn. Let C be a maximal abelian vN-subalgebra of

L(H). Then, Φ leaves C invariant if and only if for every c ∈ C there exist cmn =
cmn(c) ∈ C for m,n ∈ N s.t. 1) cmn(c

†) = cnm(c)
† and 2) [c, φm] =

∑

n∈N cmnφn.

The “if”-direction in Theorem 10 can be seen using the von Neumann bicom-
mutant theorem. We can recover the “only if”-direction, albeit only for atomic C,
as a consequence of Theorem 5 as follows: If C is a maximal abelian and atomic
vN-subalgebra of L(H), then its decomposition as in Definition 3 becomes partic-
ularly simple, with dim(HAi

) = 1 = dim(HBi
) for all i ∈ I. Thus, for any i ∈ I,

there exists |pi〉 ∈ H such that Pi = 〈pi| ∈ L(H;C) such that {|pi〉}i∈I forms an
orthonormal basis of H. The decomposition of V in Theorem 5 in this case simplifies
to V =

∑

i,j∈I |pi〉〈pj |⊗ |ψij〉 for some vectors |ψij〉 ∈ HE satisfying 〈ψij |ψik〉 = 0 for
all i, j, k ∈ I with j 6= k. Accordingly, the Kraus operators of Φ can be written as
φn =

∑

i,j∈I〈en|ψij〉|pi〉〈pj | for some orthonormal basis {|en〉}n∈N of HE.
Since any c ∈ C can be decomposed as c =

∑

i∈I ci|pi〉〈pi|, we obtain for any
m ∈ N :

[c, φm] =
∑

i,j∈I

(ci − cj)〈em|ψij〉|pi〉〈pj | . (25)

As 〈ψij |ψik〉 = 0 for j 6= k, we can define Ci ∈ L(HE) by linearly extending

Ci|ψij〉 = (ci − cj)|ψij〉, for all i, j ∈ I . (26)
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We consider a basis expansion Ci :=
∑

m,n∈N cmn;i|em〉〈en| and define cmn =
∑

i∈I cmn;i|pi〉〈pi| ∈ C. Then, we get

∑

n∈N

cmnφn =
∑

n∈N

∑

i,j∈I

〈en|ψij〉cmn;i|pi〉〈pj |

=
∑

i,j∈I

|pi〉〈pj | ·
∑

n∈N

〈en|ψij〉cmn;i

︸ ︷︷ ︸

=〈em|Ci|ψij〉
(26)
= (ci−cj)〈em|ψij〉

=
∑

i,j∈I

(ci − cj)〈em|ψij〉|pi〉〈pj | ,

which equals [c, φm] by Eq. (25). Thus, 2) is satisfied. Also 1) holds, since the
replacement c 7→ c† in the above reasoning leads to ci 7→ c̄i, which in turn gives
Ci 7→ C

†
i , finally implying cmn;i 7→ c̄nm;i and thus cmn 7→ c

†
nm.

We note that our Theorem 5 not only gives rise to Theorem 10, but also provides
a concrete characterization of the most general CP-maps satisfying the criterion of
Theorem 10 for the atomic case. Similarly, we can reproduce and concretize [22,
Theorem 1.2] for atomic C.

4.4. Completely positive and trace-preserving maps with fixed points

In this section, we look at the Koashi-Imoto Theorem [17, Eq. (85) and Theorem
3] and restrict ourselves to finite-dimensional systems. The Koashi-Imoto Theorem
characterizes the form of CP-maps T ∈ CPσ(H) that are trace-preserving and state-
preserving, in the sense that T (ρs) = ρs for some set of density matrices {ρs}s∈S .
If T (ρ) = trE

[
V ρV †

]
, with V ∈ L(H;H ⊗ HE); FT is the set of fixed points of

T ; HFT
:= ∪ρ∈FT

supp(ρ) ⊆ H is the support of a maximal rank fixed point; and
Q : H → HFT

is the corresponding projection, then the Koashi-Imoto Theorem
states that there is a decomposition of HFT

= UF
T̃∗
(
⊕

i∈I(HAi
⊗ HBi

)) for some
unitary UF

T̃∗
(the notation will soon make sense) and an index set I such that

V̂ =
⊕

i∈I

(1Ai ⊗ Vi) and FT = Q†UF
T̃∗

⊕

i∈I

(L(HAi
)⊗ σi)U

†
F

T̃∗
Q, (27)

where V̂ = (UF
T̃∗

⊗1E)
[
(Q⊗ 1E)V Q

†
]
U

†
F

T̃∗
, all Vi ∈ L(HBi

;HBi
⊗HE) are isometries

and all σi ∈ L(HBi
) are density matrices.

We can reproduce this result as follows: By elementary considerations (exploiting
the positivity of T ), the map T̃ : L(HFT

) → L(HFT
), T̃ (X) = QT (Q†XQ)Q† is

a trace-preserving CP-map (see [28, Proof of Lemma 6.4] for details), which, by
construction, has a full-rank fixed-point. Since Lindblad [19, Section 3] we know
that if T̃ has a full rank fixed-point, then the set of fixed points of the (unital)
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dual map T̃ ∗ forms a vN-algebra, FT̃ ∗ . As dim(H) < ∞, FT̃ ∗ it is atomic and

can be decomposed according to Definition 3. Moreover, T̃ ∗(X) = W †(X ⊗ 1E)W
with W = (Q ⊗ 1E)V Q

† and T̃ ∗(FT̃ ∗) ⊆ FT̃ ∗ . Hence, W decomposes according to

Theorem 5. This implies PiT̃
∗(P †

i (XAi
⊗ 1Bi)Pi)P

†
i =

[

A
†
ii(XAi

⊗ 1Fii)Aii

]

⊗ 1Bi =

XAi
⊗1Bi for i ∈ I and XAi

∈ L(HAi
). Since we can choose Aii minimal, this implies

HFii
= C and Aii = 1Ai . For i, j ∈ I with i 6= j, we have Pj T̃

∗(P †
i (XAi

⊗1Bi)Pi)P
†
j =

[

A
†
ij(XAi

⊗ 1Fij)Aij

]

⊗1Bi = 0 for all XAi
∈ L(HAi

). Thus Aij = 0. In conclusion, we

have W =
∑

i∈I P
†
i (1Ai ⊗Uii)Pi, with Pi given by Definition 3. From the definition

of Pi this is exactly the first part of Eq. (27), if we identify Vi with Uii.
For the second part, first note that by construction, FT = Q†FT̃Q. By the

Brouwer fixed-point theorem, there exists a density matrix σi such that trE

[

ViσiV
†
i

]

=

σi. With that choice, it is easy to see that operators of the form of the second part
in Eq. (27) are fixed-points. But since, as a general property of linear maps on
finite-dimensional spaces, the dimension of the fixed-point space of T̃ equals the
dimension the fixed-point space of T̃ ∗, the claim follows. Thus we have arrived at
the Koashi-Imoto Theorem.

5. Conclusion

In this work, we have fully characterized the generators of quantum dynamical
semigroups with an invariant vN-subalgebra. We have provided a constructive nor-
mal form for such restricted GKLS-generators and determined the freedom in their
representation. In particular, these results encompass corresponding characteriza-
tions for CP-maps with invariant vN-subalgebras.

The assumption of an invariant atomic vN-subalgebra implies that the restriction
of the quantum dynamical semigroup to that subalgebra is again a valid quantum
dynamical semigroup. This means that we can also interpret Theorem 6 as pro-
viding, given a GKLS generator on a vN-subalgebra, a complete characterization
of the possible extensions to a GKLS generator on L(H). In particular, Theorem 5
can be regarded as a constructive version of Arveson’s extension theorem [2, 21],
describing the most general CP extension on L(H) of a given CP-map defined on a
vN-subalgebra, if that subalgebra is atomic.

As demonstrated in Section 4., our characterization of GKLS-generators with an
invariant vN-subalgebra provides a unifying perspective on the results of different
prior works. We expect that this point of view can be useful for further scenarios,
such as the study of dynamical semigroups of higher-order quantum maps [4, 6],
generalizing dynamical semigroups of quantum superchannels [14].
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Classics. Birkhäuser Verlag, 1992.



23

21. Vern Paulsen. Completely bounded maps and operator algebras. Number 78 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2002.

22. BV Rajarama Bhat, Franco Fagnola, and Michael Skeide. Maximal commutative subalgebras
invariant for cp-maps:(counter-)examples. Infinite Dimensional Analysis, Quantum Probability
and Related Topics, 11(04):523–539, 2008.

23. Rolando Rebolledo. Decoherence of quantum markov semigroups. Annales de l’Institut Henri
Poincare (B) Probability and Statistics, 41(3):349–373, 2005. En hommage a Paul André
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A Auxiliary Lemma

In this appendix, we provide a full statement and a complete proof of a lemma
useful in proving Theorem 6. Here, we use the notation from Section 3.

LEMMA 11. Let A ⊆ L(H) be an atomic weakly closed *-algebra. An operator
B ∈ L(H ⊗ H

Ẽ
;H ⊗ HE) satisfies (XA ⊗ 1E)B = B(XA ⊗ 1

Ẽ
) for all XA ∈ A if

and only if there exist B0 ∈ L(H0 ⊗H
Ẽ
;H0 ⊗ HE) and for every i ∈ I an operator

Bi ∈ L(HBi
⊗H

Ẽ
;HBi

⊗HE) such that B is given by the SOT-convergent series

B = (P †
0 ⊗ 1E)B0(P0 ⊗ 1

Ẽ
) +

∑

i∈I

(P †
i ⊗ 1E)(1Ai ⊗Bi)(Pi ⊗ 1

Ẽ
).

Proof. We fix orthonormal bases {|en〉}n∈N and {|ẽm〉}m∈M of HE and H
Ẽ
, respec-

tively. Since (XA ⊗ 1E)B = B(XA ⊗ 1
Ẽ
) for all XA ∈ A, it follows that the opera-

tors βnm := (1H ⊗ 〈en|)B(1H ⊗ |ẽm〉) belong to A′. Thus (following the discussion
around Eq. (4)), there are operators βnm;0 ∈ L(H0) and βnm;i ∈ L(HBi

) such that

βnm = P
†
0βnm;0P0 +

∑

i∈I P
†
i (1Ai ⊗ βnm;i)Pi. We define B0 =

∑

n∈N,m∈M (10 ⊗
|en〉)βnm;0(10 ⊗ 〈ẽm|) ∈ L(H0 ⊗ H

Ẽ
;H0 ⊗ HE) and for all i ∈ I the operator

Bi =
∑

n∈N,m∈M (1Bi ⊗ |en〉)βnm;i(1Bi ⊗ 〈ẽm|) ∈ L(HBi
⊗ H

Ẽ
;HBi

⊗ HE). We then
have

B =
∑

n∈N,m∈M

(1H ⊗ |en〉)βnm(1H ⊗ 〈ẽm|)

=
∑

n∈N,m∈M

(1H ⊗ |en〉)P
†
0βnm;0P0(1H ⊗ 〈ẽm|)

+
∑

n∈N,m∈M,
i∈I

(1H ⊗ |en〉)P
†
i (1Ai ⊗ βn;i)Pi(1H ⊗ 〈ẽm|)

=
∑

n∈N,m∈M

(P †
0 ⊗ 1E)(10 ⊗ |en〉)βnm;0(10 ⊗ 〈ẽm|)(P0 ⊗ 1

Ẽ
)

+
∑

n∈N,m∈M,
i∈I

(P †
i ⊗ 1E) (1Ai ⊗ [(1Bi ⊗ |en〉)βnm;i(1Bi ⊗ 〈ẽm|)]) (Pi ⊗ 1

Ẽ
)

= (P †
0 ⊗ 1E)B0(P0 ⊗ 1

Ẽ
) +

∑

i∈I

(P †
i ⊗ 1E)(1Ai ⊗Bi)(Pi ⊗ 1

Ẽ
).

This is the claimed result.

B Proof of Theorem 2

LEMMA 12. Two operators K, K̃ ∈ L(HA⊗HB) satisfy a) (XA ⊗1B)K
† +K(XA ⊗

1B) = (XA ⊗ 1B)K̃
† + K̃(XA ⊗ 1B) for all XA ∈ L(HA) if and only if there exists a

self-adjoint HB ∈ L(HB) such that b) K̃ = K + 1A ⊗ iHB.
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Proof. If K̃ = K + 1A ⊗ iHB, then a) holds trivially. For the converse, decompose
K and K̃ into real and imaginary part as K = R + iH and K̃ = R̃ + iH̃. By
choosing XA = 1A, we obtain R̃ = R. The relation a) the simplifies to iH(XA ⊗
1B) − (XA ⊗ 1B)iH = iH̃(XA ⊗ 1B) − (XA ⊗ 1B)iH̃ . In terms of the commutator,

this reads
[

i(H − H̃),XA ⊗ 1B

]

= 0 for all XA ∈ L(HA). Thus i(H − H̃) is in the

commutant of L(HA) ⊗ 1B, which is 1A ⊗ L(HB). Hence, there exists a self-adjoint
HB ∈ L(HB) such that H̃ = H +1A⊗HB. With K̃ = R+ iH̃, the claim follows.

We provide a proof of Theorem 2. The proof follows Chapter 30 in [20], in
particular the proof of Proposition 30.14 therein.

Proof. For any triplets (HE, V,K) and (H
Ẽ
, Ṽ , K̃), we introduce the shorthand

π(X) := (X⊗1E)V −V X and π̃(X) := (X⊗1
Ẽ
)Ṽ − Ṽ X. For the triplet (H

Ẽ
, Ṽ , K̃)

given in the statement of the theorem, the space S̃ := span{π̃(X)|ψ〉 |X ∈ L(H), |ψ〉 ∈
H} is invariant under the action of Y ⊗1

Ẽ
for all Y ∈ L(H), since for any S̃ ∋ |φ〉 =

∑

i π̃(Xi)|ψi〉, we have

(Y ⊗ 1
Ẽ
)|φ〉 =

∑

i

(Y ⊗ 1
Ẽ
)π̃(Xi)|ψi〉

=
∑

i

π̃(Y Xi)|ψi〉
︸ ︷︷ ︸

∈S̃

− π̃(Y )Xi|ψi〉
︸ ︷︷ ︸

∈S̃

∈ S̃.

Thus, the closure of S̃ is of the form H⊗HE, for some subspace HE ⊆ H
Ẽ
. Denote

by P ∈ L(H
Ẽ
;HE) the associated orthogonal projection onto HE. We define V :=

(1⊗P )Ṽ . By construction, V satisfies b). So, to prove the first part of the theorem,
it remains to construct a suitableK. Since 1⊗P †P is the projection onto the closure
of S̃, we obtain

(X ⊗ 1
Ẽ
)Ṽ − Ṽ X = (1⊗ P †P )((X ⊗ 1

Ẽ
)Ṽ − Ṽ X)

= (1⊗ P †)((X ⊗ 1E)V − V X)

for all X ∈ L(H). A rearrangement yields

(X ⊗ 1
Ẽ
)(Ṽ − (1⊗ P †)V ) = (Ṽ − (1⊗ P †)V )X

By Lemma 11 (with A = L(H)), this implies that there exists |φ̃〉 ∈ H
Ẽ
such that

Ṽ − (1⊗P †)V = 1⊗ |φ̃〉. We define K := K̃ − (1⊗ 〈φ̃|)Ṽ + 1
2‖φ̃‖

2, and notice that
PP † = 1E. Thus,

V †(X ⊗ 1E)V =
[

(1⊗ P †)V
]†

(X ⊗ 1
Ẽ
)
[

(1⊗ P †)V
]

=
[

Ṽ − 1⊗ |φ̃〉
]†

(X ⊗ 1
Ẽ
)
[

Ṽ − 1⊗ |φ̃〉
]

.



26

From here, it is easy to see that V †(X ⊗ 1E)V − K†X − XK = Ṽ †(X ⊗ 1
Ẽ
)Ṽ −

K̃†X −XK̃ = L(X) for all X ∈ L(H). This is our first claim.
For the second claim suppose that for (HE, V,K), a) and b) are satisfied, and

that for (H
Ẽ
, Ṽ , K̃), a) is satisfied. A direct calculation reveals that

Ψ(X,Y ) := L(X†Y )−X†L(Y )− L(X†)Y +X†L(1)Y

= π(X)†π(Y ) = π̃(X)†π̃(Y ), (28)

for all X,Y ∈ L(H). On S := span{π(X)|ψ〉 |X ∈ L(H), |ψ〉 ∈ H}, we define a map
W0 by linear extension of the relation W0π(X)|ψ〉 := π̃(X)|ψ〉. This is well-defined,
since if

∑

i π(Xi)|ψi〉 =
∑

j π(Yj)|ψj〉, then

‖
∑

i

π̃(Xi)|ψi〉 −
∑

j

π̃(Yj)|ψj〉‖
2

=
∑

i,i′

〈ψi|π̃(Xi)
†π̃(Xi′)ψi′〉+

∑

i,j′

〈ψi|π̃(Xi)
†π̃(Yj′)ψj′〉

+
∑

j,i′

〈ψj |π̃(Yj)
†π̃(Xi′)ψi′〉+

∑

j,j′

〈ψj |π̃(Yj)
†π̃(Yj′)ψj′〉

(28)
=
∑

i,i′

〈ψi|π(Xi)
†π(Xi′)ψi′〉+

∑

i,j′

〈ψi|π(Xi)
†π(Yj′)ψj′〉

+
∑

j,i′

〈ψj |π(Yj)
†π(Xi′)ψi′〉+

∑

j,j′

〈ψj |π(Yj)
†π(Yj′)ψj′〉

= ‖
∑

i

π(Xi)|ψi〉 −
∑

j

π(Yi)|ψj〉‖
2 = 0.

Furthermore, W0 can be extended to an isometry W 0 on the closure of S, since for
any |φ〉 =

∑

i π(Xi)|ψi〉 ∈ S, we have

‖W0|φ〉‖
2 =

∑

i,i′

〈ψi|π̃(Xi)
†π̃(Xi′)ψi′〉

(28)
=
∑

i,i′

〈ψi|π(Xi)
†π(Xi′)ψi′〉 = ‖φ‖2 .

Moreover, from

(X ⊗ 1
Ẽ
)W 0π(Y )|ψ〉 = (X ⊗ 1

Ẽ
)π̃(Y )|ψ〉 = π̃(XY )|ψ〉 − π̃(X)Y |ψ〉

=W 0π(XY )|ψ〉 −W 0π(X)Y |ψ〉 =W 0(X ⊗ 1E)π(Y )|ψ〉

and totality of S, we conclude that (X ⊗ 1
Ẽ
)W 0 = W 0(X ⊗ 1E). Lemma 11 (with

A = L(H) and the roles of HE and H
Ẽ
interchanged) yields that there is an isometry
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W ∈ L(HE;HẼ
) such that W 0 = 1⊗W . We note that W0 maps S surjectively onto

S̃. Thus, (since isometries have closed ranges) if S̃ is dense, W 0 is surjective and
hence W is a unitary. This is the claim of the last sentence in the theorem.

It remains to verify Eq. (2). To this end, note that by definition (1⊗W )((X ⊗
1E)V − V X) = (X ⊗ 1

Ẽ
)Ṽ − Ṽ X, which can be expressed as

(X ⊗ 1
Ẽ
)((1 ⊗W )V − Ṽ ) = ((1⊗W )V − Ṽ )X.

Since this holds for all X ∈ L(H), Lemma 11 (with A = L(H)) tells us that there
exists a vector |ψ̃〉 ∈ H

Ẽ
such that (1 ⊗W )V − Ṽ = −1 ⊗ |ψ̃〉. This is the first

part of Eq. (2). To find the relation between K and K̃ we equate versions two of
L(X) in a) (with and without the tilde) and substitute Ṽ = (1 ⊗W )V + 1 ⊗ |ψ̃〉
After expanding the quadratic term and some cancellations and rearrangements, we
arrive at

K̂†X +XK̂ = K̃†X +XK̃, for all X ∈ L(H),

with K̂ = K +(1⊗〈ψ̃|W )V + 1
2‖ψ̃‖

2. By Lemma 12 (with HB = C), there is µ ∈ R

such that K̃ = K̂ + iµ. This finishes the proof.
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