dc.contributor.author
Müller, Alexander
dc.date.accessioned
2023-12-06T10:18:38Z
dc.date.available
2023-12-06T10:18:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41123
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40844
dc.description.abstract
We give a new, conceptual proof and sharp generalization of a Theorem by Cary Malkiwiech [Mal17] about how the assembly map of the algebraic K-theory of a group ring (spectrum) with respect to a finite group G admits a dual coassembly map, such that the composition of assembly and coassembly is the well-studied norm map of K(R).
Using the equivariant perspective on assembly of [DL98] and the precise un- derstanding of the 1-category of genuine G-spectra that the theory of spectral G-Mackey functors of [Bar17] a↵ords, we show the above theorem by contem- plating various universal properties, and that it holds for any additive functor Catperf ! Sp instead of K-theory.
en
dc.format.extent
78 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
algebraic K-theory
en
dc.subject
higher category theory
en
dc.subject
equivariant stable homotopy theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::514 Topologie
dc.title
Assembly and norm maps via genuine equivariant homotopy theory
dc.contributor.gender
male
dc.contributor.firstReferee
Reich, Holger
dc.contributor.furtherReferee
Varisco, Marco
dc.date.accepted
2023-07-17
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-41123-4
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access