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Abstract. We give a new, conceptual proof and sharp generalization of a

Theorem by Cary Malkiwiech [Mal17] about how the assembly map of the

algebraic K-theory of a group ring (spectrum) with respect to a finite group
G admits a dual coassembly map, such that the composition of assembly and

coassembly is the well-studied norm map of K(R).
Using the equivariant perspective on assembly of [DL98] and the precise un-

derstanding of the ∞-category of genuine G-spectra that the theory of spectral

G-Mackey functors of [Bar17] affords, we show the above theorem by contem-
plating various universal properties, and that it holds for any additive functor

Catperf → Sp instead of K-theory.
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1. Introduction

The algebraic K-theory of a ring or ring spectrum R is a powerful invariant,
but notoriously inaccessible to computations. Fixing a finite group G, one might
attempt to recover information about the K-theory of the group ring K(R[G])
from knowledge of both K(R) and the group homology of G, and indeed there is
an assembly map

H∗(BG;K(R))→ K∗(R[G]),

coming from a map of spectra

BG+ ⊗K(R) −→ K(R[G]).

As we will explain in more detail in Chapter 4, this map occurs as the universal
left approximation of Waldhausen A-theory

A : S → Sp, x 7→ K(PerfR[Ωx])

by a colimit-preserving functor.
Unfortunately, this map is generally far from an isomorphism (or even an injec-

tion on homotopy groups). Segue - another map that is not an isomorphism is the
norm map

nm : XhG → XhG

associated to any X ∈ SpBG. However, the norm map becomes an isomorphism
after localizing with respect to any Morava theory K(n) (prime p implicit), e.g.
rationally (see [HS96] or, for a generalized and modern account [HL13]).

In 2017, Cary Malkiewich published the following theorem, which at least K(n)-
locally implies that the assembly map is a split-injection:1

Theorem 1.1 (Malkiewich, [Mal17]). If G is a finite group and R a ring (or ring
spectrum), the composite

BG+ ⊗K(R) K(R[G])

GR(R[G]) map(BG+,K(R))

assembly

cartan

coassembly

is equivalent to the norm map

nm : K(R)hG → K(R)hG

associated to K(R) with the trivial G-action.

Here, GR(R[G]) := K(Fun(BG,PerfR)) is the K-theory of perfect R-modules
with G-action, also called Swan-theory. The difference between perfect R-modules
with G-action and perfect R[G]-modules is captured by the fact that in general,

Fun(BG,ModR)ω ̸≃ Fun(BG,ModRω)

However, if G is finite, there is a comparison map going from left to right, and the
K-theory of this map is exactly the cartan map K(R[G]) → GR(R[G]) appearing
in Theorem 1.1. The coassembly map GR(R[G])→ GR(R)hG = map(BG+,K(R))
then stems from the observation that Swan-theory assembles into a contravariant
functor

Sop → Sp, x 7→ K(Fun(x,PerfR)).

By an exactly dual procedure to that of assembly, this admits a canonical right
approximation by the limit preserving functor

Sop → Sp, x 7→ map(x,K(R))

1We refer to [Mal17, Ch. 2] for a more careful statement of the relation to K(n)-localization.
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and we evaluate at BG to obtain said coassembly map. Note how the cartan map is
defined only pointwise, at the spaces BG for G a finite group. There is no obvious
naturality statement possible, since the functors connected by it are of different
variance.

Malkiewich arduously proves Theorem 1.1 using explicit simplicial model cat-
egories of parametrized spectra, and a geometric description of the norm map
XhG → XhG associated to any spectrum with G-action. In particular, at no point
do genuine G-spectra come up.

The project of this thesis is to understand Theorem 1.1 through the lens of
modern ∞-category theory and genuine equivariant homotopy theorem. One way
to summarize our results might be the following sharp generalization. Here and
in the following, Catperf denotes the ∞-category of small, stable, and idempotent-
complete ∞-categories, which we take as the source of K-theory.

Main Theorem 1. Let R be an E1-ring, G a finite group and

E : Catperf → Sp

an additive functor. The classical assembly map

BG+ ⊗ E(PerfR)
α−→ E(PerfR[G])

associated to2

S → Sp, x 7→ E(x⊗ PerfR)

factorizes the norm map associated to the spectrum E(PerfR), equipped with the
trivial G-action. That is, there is a natural coassembly map

E(PerfR[G])
γ−→ map(BG+, E(PerfR))

such that the composition

E(PerfR)hG

BG+ ⊗ E(PerfR) E(PerfR[G]) map(BG+, E(PerfR))

E(PerfR)hG

∼

α γ

∼

is equivalent to the norm map.

For E = K : Catperf → Sp we immediately recover Theorem 1.1 (modulo the
fact that the norm map factorizes over GR(R[G]), but we will recover that too,
below). But now, no feature of K-theory is present in the proof except for it
being an additive functor, so the result holds for e.g. non-connective K-theory,
topological Hochschild Homology THH, topological cyclic Homology TC etc. It is
also natural in transformations of these functors such as trace maps, the pre-eminent
tool to extract results about K-theory from other, more computable invariants. For
example, for the cyclotomic trace tr : K → TC (see e.g. [LRRV17], [NS18]), we

2Here, to connect this to Waldhausen A-theory, we implicitly use the not-quite-trivial iden-
tification BG+ ⊗ PerfR ≃ PerfR[G]. Owing considerably to [CMNN20], we prove this as our
Theorem 11.3.
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obtain the commutative diagram

K(R)hG K(R[G]) K(R)hG

TC(R)hG TC(R[G]) TC(R)hG.

tr

nm

α

tr

γ

tr

α

nm

γ

Our proof of 1 relies on connections between the norm map and assembly through
equivariant homotopy theory. We give a quick tour through the relevant ideas here.
Let OrG be the orbit-category of the finite group G, i.e. the category formed by
the G-sets G/H and equivariant maps. Recall that any G-spectrum X not only
admits a ’naive’ underlying spectrum with G-action uX ∈ Fun(BG,Sp), but also
an underlying OropG -spectrum:A functor ⃗uX : OropG → Sp), given by

G/H 7→ XH .

The functoriality is expressed in the formula XH ≃ mapSpG
(G/H+, X). Dually, X

also restricts to an OrG-spectrum (that is, a functor u⃗X : OrG → Sp), given by
the formula

G/H 7→ XH ≃ (G/H+ ⊗X).

Also note that taking (homotopy) orbits determines a canonical functor

c : OrG → S, G/H 7→ BH.

We shall prove the following two theorems in this thesis, of which Theorem 1 is
then an immediate corollary.

Theorem A. Let F : S → Sp be any functor satisfying the property that the com-
posite

OrG
c−→ S F−→ Sp

is equivalent to the underlying OrG-spectrum u⃗X of some genuine G-spectrum X.
Then we can associate to the OropG -spectrum ⃗uX a coassembly map

γ : ⃗uX(G/G)→ ⃗uX(G/1)hG

such that

⃗uX(G/G) ⃗uX(G/1)hG

F (∗)hG F (BG) F (∗)hG

γ

∼ ∼

nm

α γ

commutes.

Theorem B. For any additive E : Catperf → Sp, the composite functor

OrG S Sp

G/H BH E(BH ⊗ PerfR)

is the underlying OrG-spectrum of a genuine G-spectrum.

Before we comment on the method of proof, let us mention the strong symmetry
that is at play here: There are immediate dual versions of both theorems.
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Theorem A’. Let H : Sop → Sp be any functor satisfying the property that the
composite

OropG
c−→ Sop H−→ Sp

is equivalent to the underlying OropG -spectrum ⃗uY of some genuine G-spectrum Y .
Then we can associate to u⃗Y an assembly map

α : u⃗Y (G/1)hG → u⃗Y (G/G)

such that

u⃗Y (G/1)hG u⃗Y (G/G)

H(∗)hG H(BG) H(∗)hG.

∼

α

∼

nm

α γ

commutes.

Here, the assembly map H(∗)hG → H(BG) was not a priori present on the
functor Sop → Sp, where in the case of Theorem A, it is the coassembly map that
cannot in general be constructed on a functor S → Sp.

Theorem B’. For any additive E : Catperf → Sp, the functor

OropG Sop Sp

G/H BH E(Fun(BG,PerfR))

is the underlying OropG -spectrum of a genuine G-spectrum.

This perspective also closes the loop on the role that Swan-theory plays: If
X ∈ SpG is the G-spectrum associated to

x 7→ K(x⊗ PerfR)

by Theorem B (i.e. the one modeling assembly in K-theory), and Y ∈ SpG is the
G-spectrum associated to

x 7→ K(Fun(x,PerfR)),

by Theorem B’ (i.e. the one modeling coassembly in Swan-theory), we will observe
a map of G-spectra X → Y whose G-fixed points represent the cartan map, and
which is an equivalence on underlying spectra with G-action. The situation is
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summarized in the commutative diagram

XhG XG XhG

BG+ ⊗K(R) K(R[G]) map(BG+,K(R))

BG+ ⊗GR(R) GR(R[G]) map(BG+, G
R(R))

YhG Y G Y hG.

∼

nm

∼ ∼

∼ cartan ∼

∼ ∼ ∼

nm

Here, all horizontal maps in the left column are assembly maps, all horizontal
maps in the right column are coassembly maps, and all horizontal compositions are
identified with the norm map on K(R).

Our proofs of Theorems A and B rely on the precise control of the homotopy
theory of G-spectra afforded by the theory of spectral Mackey functors. Recall that
the ∞-category of G-spaces is equivalent to Fun(OropG ,S), or equivalently

SG ≃ Fun×(Finop
G ,S).

This is known as Elmendorf’s theorem. Here, the functor associated to a G-space
X is given by

G/H 7→ XH ≃ MapSG
(G/H,X).

A naive guess towards a comparable description of G-spectra might then be

SpG

?≃ Fun×(Finop
G ,Sp).

However, for reasons visible to the geometry of equivariant suspension, the ∞-
category SpG allows transfer maps, i.e. ’wrong way’ maps S[G/H]→ S[G/K] asso-
ciated to equivariant maps G/K → G/H. For example, the mapping space

MapSpG
(S[G/G],S[G/1])

is not contractible, but equivalent to Ω∞S. These wrong-way maps are not present
in the purported description Fun×(Finop

G ,Sp), but it turns out that accounting for
them and their compatibility is exactly the missing ingredient.

Definition 1.2. Let Span(FinG) denote the ∞-category with objects the finite
G-sets, and morphisms S → T given by spans

U

S T,

composition given by forming pullbacks.3

Theorem 1.3 (Guillou-May [GM17a], Barwick [Bar17]). There is an equivalence
of ∞-categories

SpG ≃ Fun×(Span(FinG)
op,Sp)

that sends a G-spectrum X to the diagram

G/H 7→ XH .

3See Chapter 6, which closely follows [Bar17], for a complete definition.
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The target of this equivalence, the full subcategory of Fun(Span(FinG)
op,Sp) on

the product-preserving functors, is called the ∞-category of spectral Mackey func-
tors MackG(Sp). We give our perspective on Theorem 1.3 in Chapter 9, following
a detailed investigation of the ∞-category MackG(Sp) in Chapter 8.

This lets us construct G-spectra in new ways: For example, given a product-
preserving Span(FinG)

op-diagram X with values in some other preadditive ∞-
category C and a product-preserving functor F : C → Sp, we can form the com-
position

Span(FinG)
op X−→ C F−→ Sp

as an object of MackG(Sp) ≃ SpG. The G-spectra proclaimed in Theorems B and
B’ will be of this kind, with intermediate coefficients C = Catperf , the∞-category of
small stable idempotent-complete ∞-categories and exact functors. We will finish
the proof of both Theorems in Chapter 12, after carefully establishing the necessary
formal properties of Catperf in Chapter 11.

The other ingredient to this project is the equivariant perspective on assembly
laid out in [DL98]. To a functor

E : OrG → Sp

an assembly map E(G/1)hG → E(G/G) is associated. Given F : S → Sp, in Chap-
ter 4 we confirm in our modern language the folklore result that this construction
applied to

E : OrG
c : G/H 7→BH−−−−−−−−−−→ S F−−−−−−→ Sp

recovers the classical assembly map associated to F . Carefully passing from genuine
G-spectra to Mackey functors and their underlying OrG-spectra and back is then
what facilitates the proofs of Theorems A and A’, which we finish in Chapter 10.
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2. Conventions, notations & recollections

2.1. ∞-categories. This thesis is written in the language of ∞-categories, as laid
out in the foundational works of Jacob Lurie [Lur09], [Lur17], and [Lur21]. With
these works at our back, we can mostly work model-independent, that is we consider
as given an ∞-category of ∞-categories and all the usual categorical notions like
functor ∞-categories, colimits, limits, adjunctions, etc. Unless otherwise specified,
these words shall always refer to their ∞-categorical definitions.

A classical category is of course a special case of an ∞-category (one with the
property that all mapping spaces are discrete), and we will refer to these not as
’ordinary’ categories, but 1-categories. We remark that all the above categorical
notions coincide with their classical counterpart if the ∞-categories in which they
are applied are 1-categories.

2.2. A word on the size of the universe. We follow the usual convention: There
is a fixed universe of ’small’ sets, and a small∞-category is then a (levelwise) small
simplicial set. Note that many of our ∞-categories then will not be small, such
as the ∞-category of (small!) spaces S or the ∞-category of small ∞-categories
Cat∞, so that for example S is not an object of Cat∞. However, one may enlarge

the universe to obtain an ∞-category of ’large’ ∞-categories Ĉat∞ (of which S is
then an object), and so on.

When no real size issues are in sight, we will not bother mentioning the ’small’,
e.g. when stating that an ∞-category admits all colimits indexed by a small ∞-
category, we will usually just say it admits ’all colimits’.

2.3. Commutative monoids and spectra. We define the∞-category of spectra

as the limit (in Ĉat∞) of

· · · → S•
Ω−→ S•

Ω−→ S•
Ω−→ S•,

i.e. a spectrum is given by a sequence of pointed spaces {En} and equivalences
ΩEn+1 ≃ En. We think of E0 as its underlying space, which comes equipped with
the structure of chosen deloopings, ad infinitum.

This is the fundamental object of study in stable homotopy theory, the canonical
stabilization of the ∞-category of spaces and closely related to the ∞-category
of commutative monoids (where we of course mean the homotopical version, see
Chapter 5 for details.).

To give some context, let us review a hierarchy of properties an ∞-category C
might possess, giving increasingly more structure on its mapping spaces.

We call C pointed if it admits a zero-object, i.e. an object 0 ∈ C that is both
initial and terminal, i.e. all mapping spaces to and from 0 are contractible. This
canonically makes all mapping spaces themselves pointed (at the map x→ 0→ y),
and one might think of C as enriched over pointed spaces.

We call an ∞-category C preadditive if it is pointed, admits finite coproducts
and products and for any finite collection of objects {ci} the natural comparison
map

ϕ :
∐

ci →
∏

ci

given as

ϕij =

{
id if i = j

0 if i ̸= j.

is an equivalence. This canonically promotes each mapping space to a commutative
monoid (i.e. an E∞-algebra in S, see Chapter 5) via

f + g : x
△−→ x× x ≃ x⨿ x

f⨿g−−−→ y ⨿ y
▽−→ y,
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and one might think of C as enriched over commutative monoids.
We call an ∞-category C additive if it is preadditive and its mapping spaces are

grouplike, i.e. for each x, y ∈ C, we have that π0 MapC(x, y) is not merely a discrete
commutative monoid but an abelian group. Somewhat tautologically, one might
think of C as enriched over grouplike commutative monoids.

We call an∞-category stable if it is pointed and a square in C is a pushout if and
only if it is a pullback. This certainly implies preadditivity, and with a little more
thought also implies additivity ([Lur17, Lemma 1.1.2.9]). Further, the mapping
spaces of C admit canonical deloopings by

MapC(x, y) ≃ ΩMapC(x,Σy),

allowing us to think of C as enriched over the ∞-category of spectra Sp. We shall
consistently denote these mapping spectra by mapC(x, y).

Notice that pointed, preadditive and stable ∞-categories are characterized by
identifying increasingly more diagrams as both colimit and limit diagrams simulta-
neously. We point to [GGN15] and [CSY20, Ch. 5], for more thorough discussions
of a certain poset of properties including the above.

We also remark that we have right adjoint ’forgetful’ functors

Sp CMongp CMon S• S.

Ω∞

Here, the second term identifies with Sp≥0 via the classical May Recognition
Principle (see [May72] or [Lur17, Thm. 5.2.6.26]): Given an E1-structure on a space
x, one may form a pointed, connected delooping Bx ∈ S•,≥1, and pass back via the
loop-space functor (which canonically lands in SgpE1

, the ∞-category of grouplike
E1-spaces). This gives an equivalence of categories

SgpE1
≃ S•,≥1

and repeated application of this principle then gives an equivalence

CMongp ≃ lim
(
· · · → S•,≥2

Ω−→ S•,≥1
Ω−→ S•,≥0 = S•

)
= Sp≥0.

2.4. Presentable∞-categories. Presentable∞-categories have many convenient
formal properties. Morally, they are ∞-categories that admit all small colimits
(and thus are usually large), but are still controlled by a small subcategory - the
prototypical example is the ∞-category of spaces S, the ∞-category obtained from
the terminal one by freely adjoining all (small) colimits.

Definition 2.1. An ∞-category is presentable exactly if it is an accessible local-
ization of P(C) for some small C.

Here, P(−) denotes the category of presheaves on C, i.e. the∞-category obtained
by freely adjoining all colimits, and we refer to [Lur09, Sect. 5.4.2] for accessibility
concerns. Here are three particularly pleasant consequences of presentability:

• Presentable ∞-categories are cocomplete, i.e. admit all (small) colimits
[Lur09, Thm. 5.5.1.1], and complete, i.e. admit all (small) limits [Lur09,
Cor. 5.5.2.4].

• The adjoint functor theorem [Lur09, Cor. 5.5.2.9]: A functor F : C → D
between presentable ∞-categories admits a right adjoint if and only if F
preserves all colimits. A functor G : D → C admits a left adjoint if and only
if G preserves all limits and preserves filtered colimits.

• Presentable ∞-categories and left adjoint functors organize into the ∞-
category PrL [Lur09, Def. 5.5.3.1]. This ∞-category then is symmetric
monoidal with respect to the Lurie tensor product [Lur17, Ch. 4.8.1], a
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fairly strict generalization of the tensor product of vector spaces: Given
C,D ∈ PrL it is characterized by a functor

C × D → C ⊗D
such that colimit-preserving functors C ⊗ D → E identify with functors
C × D → D preserving colimits in either variable.

A commutative algebra object in PrL is then the same as a presentable
∞-category with symmetric monoidal structure that preserves colimits in
either variable, and we refer to such an∞-category as presentably symmet-
ric monoidal, and collect these in the ∞-category CAlg(PrL).

Further examples of presentable ∞-categories include the ∞-category of small
∞-categories Cat∞ and the∞-category of spectra Sp. If K is a small simplicial set
and C is presentable, so is Fun(K, C), and so is the full subcategory of Fun(K, C)
spanned by the colimit-preserving functors, and similarly for a whole host of other
constructions one might want to perform.

2.5. Equivariant homotopy theory. Let us fix a finite group G. Given some
convenient model category of G-spaces (such as G-CW-spaces), we may invert the
equivariant equivalences (i.e. equivariant maps that induce weak equivalences of
spaces after taking fixed points with respect to all subgroups of G) to obtain an
∞-category of G-spaces SG. Let OrG be the full subcategory of SG spanned by the
orbits G/H. It is then the content of Elmendorf’s Theorem that the functor

SG → Fun(OropG ,S), X 7→ [G/H 7→ MapSG
(G/H,X)]

is an equivalence of ∞-categories, so we might as well take the right hand side
as our definition. In view of [Lur09, Thm. 5.1.5.6], this says that G-spaces are
obtained by freely forming colimits of orbits. As a category of presheaves, SG is
itself presentable, and we consider it symmetric monoidal (i.e. as an object of
CAlg(PrL)) under the cartesian symmetric monoidal structure.

The∞-category of pointed G-spaces SG• is symmetric monoidal under the smash
product of G-spaces (i.e. the essentially unique symmetric monoidal structure ren-
dering the left adjoint of the forgetful functor SG• → SG symmetric monoidal),
and we define the ∞-category of genuine G-spectra SpG as the initial presentably
symmetric monoidal ∞-category under SG• in which the representation spheres
are inverted. That is, by definition, SpG is presentably symmetric monoidal and
equipped with a symmetric monoidal left adjoint

ΣG : SG• → SpG

that sends the representation spheres in SG• to invertible objects of SpG.
This definition is powered by the results of Marco Robalo’s thesis [Rob15]. In the

appendix of [GM20], it is proven that this is indeed the ∞-category obtained from
the model category of orthogonal spectra, which is the more classical way to define
SpG, see e.g. [NS18] for a detailed account. As mentioned in the introduction,
SpG is known to be equivalent to the very concrete ∞-category of spectral G-
Mackey functors. We will explain the latter in Chapter 8, and carefully study the
equivalence in Chapter 9.
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3. Kan extensions

In this chapter, we give a brief account of the main features of the theory of Kan
extensions (along fully faithful functors), collect some useful results and compute
examples. Our exposition is based on [Lur21, Tag 02YP], and is heavily streamlined
to our needs.

Definition 3.1. [Lur21, Def. 7.4.2.1] Given a functor F : J → C, a full subcategory
I ↪→ J , and an object X ∈ J we say that F is left Kan extended from I at X if
the composition

(I/X)▷ → (J/X)▷
c−→ J F−→ C

is a colimit-diagram in C.

Here, the relative overcategory I/X is the pullback4

I/X J/X

I J ,

i.e. the ∞-category whose n-simplices are those (n + 1)-simplices of J whose
restriction to [0, ..., n] is contained in I and whose final vertex is X. We refer to
App. B.1 for a discussion of absolute overcategories. The map c : (J/X)▷ → J
is the slice contraction morphism, which restricts on J/X to the canonical right
fibration J/X → J , sends the final object ∞ to X ∈ J and maps the (essentially)
unique edge from an object (j → X) to ∞ to the edge j → X of J . We refer to
[Lur21, Constr. 4.3.5.12] for details.

Informally, this says that if F is left Kan extended from I at X, its value F (X)
is determined by its restriction F |I , namely as

F (X) ≃ colim(I/X → I
F−→ C),(3.2)

exhibited as such by the natural diagram under I/X .

Remark 3.3. We note that any functor F : J → C is automatically left Kan
extended from I at i if the object i is in I. This is so since the overcategory
I/i then admits a terminal object i

=−→ i. The value of the relevant composition
(I/i)▷ → C at the conepoint agrees with its value at the terminal object of I/i via
the natural map, so it is a colimit-diagram and the condition is satisfied.

We say that functor F : J → C is left Kan extended from I ↪→ J if it is left
Kan extended at X for all X ∈ J , and we say F : J → C is a left Kan extension
of F0 : I → C if F is, well, left Kan extended from I and there is an equivalence
η : F0

∼−→ F |I . Note that by Remark 3.3, any left Kan extended functor is a left
Kan extension of its restriction.

As a consequence of the essential uniqueness of colimiting diagrams, any two left
Kan extensions of some F0 : I → C are naturally isomorphic, i.e. equivalent in the
∞-category Fun(J ,D).

If C has all (or at least all I/X -shaped) colimits, every functor F0 : I → C admits
a left Kan extension lF0 : J → C, and these assemble to a fully faithful functor

l : Fun(I, C)→ Fun(J , C)
with essential image exactly the left Kan extended functors, see [Lur09, Prop. 4.3.2.15].

The colimit-formula for left Kan extensions not only determines the functor F
from its restriction to I, but importantly it also forces all natural transformations

4Taken equivalently in Cat∞ or sSet, see Remark B.1.
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into any other functor G : J → C to be determined by their restriction to I. More
precisely:

The composition

mapFun(J ,D)(lF0, G)
res−−→ mapFun(I,D)((lF0)|I , G|I)

η∗

−→ mapFun(I,D)(F0, G|I)

is an equivalence - so the functor l provides a left adjoint to the restriction functor,
with unit specified by the identification η : F0

∼−→ F |I ([Lur09, Prop. 4.3.2.17]).
Everything just said dualizes, mutatis mutandis, to give the theory of right Kan

extensions: A right Kan extension F : J → C of a functor F0 : I → J is uniquely
determined by the requirement

F (X) ≃ lim(IX/ → I → C)

via the natural diagram over IX/ with conepoint F (X). Equivalently, a functor
F : J → C is right Kan extended from I → J if the opposite functor F op : Iop →
Cop is left Kan extended from Iop → J op.

Right Kan extensions exist if the ∞-category C admits all limits of shape IX/,
and assemble to a fully faithful functor

r : Fun(I, C)→ Fun(J , C),

which is right adjoint to the restriction functor.

3.1. Examples. We now compute some examples and obtain useful structural re-
sults.

Example 3.4. Let C be a cocomplete ∞-category, and let F : ∗ → C classify some
object F0 ∈ C. The left Kan extension of F along ∗ ↪→ S at a given space X is then
given by

lF (X) ≃ colim(∗/X → ∗ → C),
i.e. by the colimit of shape ∗/X with constant value F0. The pullback square

∗/X S/X

∗ S

identifies ∗/X with MapS(∗, X) ≃ X. Thus, recalling that we may consider any
cocomplete ∞-category as tensored over spaces via

X ⊗ c := colim
X

c,

we identify the left Kan extension of F along ∗ ↪→ S with the functor

S → C, X 7→ X ⊗ F0.

Note that lF preserves all colimits.
Dually, for C a complete∞-category, the right Kan extension of F along ∗ ↪→ Sop

at a given space X is then given by

rF (X) ≃ lim(∗X/ → ∗ → C),

where the relative overcategory ∗X/ is computed in Sop, so again is equivalent to
X. Thus we have

rF (X) ≃ MapS(X,F0) for C = S,
rF (X) ≃ Fun(X,F0) for C = Cat∞,

rF (X) ≃ mapSp(X,F0) for C = Sp, see Remark B.3.
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Remark 3.5. Maybe now is a good time to comment on an unfortunate almost-
clash of notation: If C = Sp, the ∞-category of spectra, E any spectrum and X
any space, it is customary to write X+ ⊗ E for the colimit (in Sp) of the constant
diagram of shape X with value E. Indeed, here X+⊗E is shorthand for Σ∞

+ X⊗E
(note that ⊗ now denotes the smash product of spectra), and we have consistency
since

Σ∞
+ X ⊗ E ≃ (Σ∞

+ colim
X
∗)⊗ E

≃ colim
X

(Σ∞
+ ∗ ⊗E)

≃ colim
X

(S⊗ E) ≃ colim
X

E.

In contrast, if the space X is already pointed, X ⊗ E is classically shorthand for
Σ∞X ⊗ E, for example in Sn ⊗ E ≃ ΣnE. The difference becomes clear if we are
unsure whether to consider ∗ as an unpointed space or a pointed space: we would
read ∗ ⊗E either as colim∗ E = E or as (Σ∞∗)⊗E = 0, respectively. Thus, in the
case of C = Sp we shall stick to the classical X+ ⊗ E for a colimit of shape X, to
avoid confusion.

Example 3.6. If ∗ is the terminal object of J , the left Kan extension of some
functor F0 : I → C to J at ∗ is given by

lF0(∗) ≃ colim(I F0−→ C)

since I/X → I is an equivalence if ∗ is terminal in J . If F0 is the restriction of
some F : J → C, the comparison map

lF0 → F

is then the natural map

colim(I F0−→ C)→ colim(J F−→ C) ≃ F (∗).

Proposition 3.7. [Gla17, Lem. 2.20] Let I ↪→ J be an additive, fully-faithful
inclusion of preadditive ∞-categories, and

F : I → C

an additive functor into a bicomplete, preadditive ∞-category C. Then both Kan
extensions

lF, rF : J → C
are additive.

Proof. We prove the assertion for the left Kan extension lF , and begin by remarking
that lF certainly preserves 0-objects since both the inclusion I ↪→ J and F are
assumed additive.

Now we show that for any objects X,Y ∈ J , the functor

I/X × I/Y −→ I/X⊕Y , (i→ X, j → Y ) 7→ (i⊕ j → X ⊕ Y )

is final, i.e. computing colimits is invariant under precomposition with this functor5.
Indeed, it is the statement of [Lur21, Tag 02P3] that exhibiting a left adjoint suffices,
which is given by

I/X⊕Y −→ I/X × I/Y , (i→ X ⊕ Y ) 7→ (i→ X, i→ Y ).

5Note that in [Lur21], Lurie calls this property of functors right cofinal, and historically there
has been no real consensus. We go with the simple final.
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Thus, we see

lF (X ⊕ Y ) ≃ colim(I/X⊕Y → I → C)
≃ colim

I/X×I/Y

F ⊕ F

≃ colim
i∈I/X

(
colim
j∈I/Y

F (i)⊕ colim
j∈I/Y

F (j)

)
≃ colim

i∈I/X

(
F (i)⊕ colim

j∈I/Y

F (j)

)
≃ colim

i∈I/X

F (i)⊕ colim
j∈I/Y

F (j)

≃ lF (X)⊕ lF (Y ).

Here, we use in turn the general formula for left Kan extensions 3.2, the cofinality
result above and F being additive, and colimits distributing over products of cate-
gories and sums of functors. In the third and second to last step, we used the fact
that colimits of a constant diagram over any weakly contractible category are given
by its value, by [Lur09, Cor. 4.4.4.10], and that the overcategories I/X are weakly
contractible (since 0→ X specifies an initial object).

The proof of the additivity of right Kan extensions is exactly dual: Precomposing
the functor

IX/ × IY/ −→ IX⊕Y/, (X → i, Y → j) 7→ (X ⊕ Y → i⊕ j)

is seen to preserve limits (as it admits a right adjoint), so the formula for right Kan
extensions yields the result. □

We also need a slightly less structured version of this result. Let C be an ∞-
category, and write C′ for the ∞-category obtained by formally adjoining finite
sums, i.e. the full subcategory of P(C) spanned by finite coproducts of representa-
bles. Here, the examples we care about are OrG′ ≃ FinG and <G/1>′≃ FreeG.

Proposition 3.8. Given a functor F : C → D, the left Kan extension (if it exists)
lF : C′ → D preserves finite coproducts.

Proof. For any objects a, b, c of C, we have

MapC′(a, b⨿ c) ≃ MapP(C)(MapC(−, a),MapC(−, b)⨿MapC(−, c))

≃ MapC(a, b)
∐

MapC(a, c)

by the Yoneda lemma, and thus an equivalence of relative overcategories

C/b⨿c ≃ C/b
∐
C/c.

We then use the colimit formula for left Kan extensions to compute

lF (a⨿ b) ≃ colim(C/a⨿b → C → D)

≃ colim(C/a
∐
C/b → D)

≃ F (a)
∐

F (b),

again using the fact that C/a has a terminal object given by a
=−→ a. □

We now consider Kan extensions of an object with an action by a finite group
G to the orbit category OrG. Recall that functors from the transport groupoid
G
∫
∗ = BG to some ∞-category C correspond to objects of C equipped with a ’left’

action by G, OrG is the 1-category spanned by the set of objects {G/H}H≤G and
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equivariant maps, and we have a natural identification BGop =<G/1>. Given an
object X ∈ CBG, we shall write X̄ for the composition

BGop ∼−→ BG
X−→ C,

i.e. the associated object with ’right’ G-action.

Proposition 3.9. Given an object X ∈ CBG, the left Kan extension lX̄ : OrG→ C
is characterized by G/H 7→ XhH .

Proof. As OrG is a 1-category, so is the relative overcategory <G/1>/G/H . Writing

out objects and morphisms, we identify it with the groupoid (G
∫
G/H)op ≃ BHop

(compare also Lemma 4.9, which provides a more structured identification). Thus,
by the colimit formula, we have

lX̄(G/H) ≃ colim(BHop → BGop X̄−→ C)
≃ XhH .

□

Dually, right Kan extensions along BG ↪→ OrGop are characterized by

G/H 7→ lim
BH

X = XhH .

We remark that Proposition 3.8 and Proposition 3.9 together fully describe left
Kan extensions from BG to FinG, and right Kan extensions from BG to Finop

G .
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4. Assembly and coassembly

The theory of assembly maps has a long history, going back to ideas by Frank
Quinn, Jean-Louis Loday and Friedhelm Waldhausen, among others. The through-
line is the attempt to approximate some (interesting, but difficult to compute) con-
struction by another, less intractable construction in a canonical fashion. An early
reference that formalizes this circle of ideas is the often cited 1991 note [WW95]
by Michael Weiss and Bruce Williams, and (after translating it into the language
of ∞-categories) we use their basic setup as our definition.

Recall that a functor S → Sp is called strongly excisive if it preserves coprod-
ucts and pushout squares, or equivalently all colimits, or equivalently is left Kan
extended along ∗ ↪→ S, or equivalently its homotopy groups form a generalized
homology theory.

Using simplicial models for (homotopy) colimits, Weiss and Williams associate
to any functor F : S → Sp a strongly excisive functor F% : S → Sp, equipped with

a natural transformation F% → F with the property F%(∗)
∼−→ F (∗). We think of

this as a more tractable approximation of F from the left: on homotopy groups,
we read it as as a map

H∗(x;F (∗))→ π∗F (x),

so given knowledge of π∗F (∗), the left hand side might be computable using the
usual spectral sequences.

Of course, in modern language, F% has to be the functor mapping

x 7→ colim
x

F (∗) ≃ x+ ⊗ F (∗),

(i.e. the one left Kan extended from the value of F at the point) and the approxi-
mation is given by the natural comparison map

colim
x

F (∗) −−→ F (colim
x
∗) ≃ F (x)

(i.e. the unit transformation associated to left Kan extensions), compare Exam-
ple 3.4. In the relevant applications, one is interested in the approximation of F at
the classifying spaces BG, so we offer the following succinct definition.

Definition 4.1. Given a group G and a functor F : S → Sp, the Weiss-Williams-
assembly map αWW associated to F with respect toG is the counit of the adjunction

Sp SpSl

res∗↪→S

at F evaluated at BG, i.e. the natural comparison map

BG+ ⊗ F (∗) F (BG)

colimBG F (∗) F (colimBG ∗)

αWW

∼ ∼

Definition 4.2. Given any ring spectrum R ∈ SpE1
and taking F to be the functor

A : S → Sp; x 7→ K(x⊗ PerfR),

the (classical, or sometimes Loday) assembly map in K-theory of the group ring
R[G] is the Weiss-Williams-assembly map associated to F . Indeed, we will later
proof (see Theorem 11.3) that

BG⊗ PerfR ≃ PerfR[G],

so this assembly map is a map of spectra

BG+ ⊗K(R) −→ K(R[G]),
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or, even more classically, on homotopy groups a map

H∗(BG;K(R))→ K∗(R[G]).

In the above definition, the K-theory functor may of course be replaced by any
other meaningful invariant of stable ∞-categories (such as Topological Hochschild
Homology THH or Topological Cyclic Homology TC) to obtain assembly maps for
group rings in those theories.

4.1. Coassembly. Let us quickly dualize the preceding discussion: Given a functor
G : Sop → Sp, we may canonically and uniquely approximate it from the right
by a cohomology theory. That is, there is a functor G% : Sop → Sp equipped
with a natural transformation G → G% such that the map G(∗) → G%(∗) is an
equivalence, and G% takes colimits of spaces to limits of spectra (i.e. as a functor
Sop → Sp, it preserves limits).

Of course, G% then has to be the functor

x 7→ lim
x

G(∗) ≃ mapSp(x,G(∗)),

i.e. the right Kan extension of G(∗) considered as a functor ∗ → Sp along ∗ → Sop,
see Example 3.4. The natural transformation G→ G% is then given by the unit of
the adjunction

Fun(Sop,Sp) Sp.
res

r

Definition 4.3. The dual version of Definition 4.2 is given by considering the
functor

A

: Sop → Sp; x 7→ K(Fun(x,PerfR)).

This functor sends BG to the K-theory of perfect R-modules equipped with G-
action, sometimes called the Swan Theory GR(R[G]). The coassembly map is then
a map of spectra

K(PerfRBG)→ map(BG,K(R))

or on homotopy groups

GR
∗ (R[G])→ H−∗(BG,K(R)).

4.2. The equivariant perspective. In their 1998 paper [DL98], James F. Davis
and Wolfgang Lück establish a framework for assembly maps that allows more
direct access to the equivariance involved. We restate it in ∞-categorical terms in
the next definition.

Originally, the usefulness of this setup stems from the fact that it affords easy
definitions of the relative assembly maps taking center stage in the Farrell-Jones
conjecture and other isomorphism conjectures, see e.g. [RV18] and [Lüc20]. To us,
it is very useful as a bridge between the world of classical assembly and that of
genuine G-spectra, and thus a crucial change of perspective facilitating the proof
of our main Theorem 1. In the language of [DL98], we will only consider assembly
maps relative to the trivial family.

In the following, for simplicity of notation, we consider BG a full subcategory of
OrG via the usual

i : BG ≃ BGop =<G/1>↪→ OrG.

Definition 4.4. Given a group G and a functor E : OrG → Sp, the Davis-Lück-
assembly map associated to E is the counit of the adjunction

SpBG SpOrG
l

resBG↪→OrG

at E evaluated at G/G, i.e. the natural comparison map

E(G/1)hG E(G/G).
αDL
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Recall that we computed the relevant Kan extension in Proposition 3.9.
The Davis-Lück-assembly map generalizes the Weiss-Williams-assembly map,

and the latter is recovered in the following way: Precomposition with

c : OrG Fun(BG,S) Scolim

(i.e. the functor that sends G/H to BH) associates to any F : S → Sp a functor

E : OrG → S
F−→ Sp,

and the Davis-Lück-assembly map of E is equivalent to theWeiss-Williams-assembly
map of F , both taken with respect to G.

Remark 4.5. This well-known result appears to lack a full proof recorded in the
literature. We close this gap by the following, mostly formal argument.

Definition 4.6. Consider the commutative square of ∞-categories

BG ∗

OrG S.

p

i j

c

and the square induced by applying Fun(−,Sp), i.e.

(4.7)

SpBG Sp

SpOrG SpS .

p∗

i∗ j∗

c∗

In the following, we write i! and j! for the left adjoints to i∗ and j∗ (i.e. the left Kan
extensions along i and j), and e.g. ηi for the unit of the adjunction associated to i,
and εi for the counit of the same adjunction. The Weiss-Williams-assembly map is
then the counit εj : j!j

∗ → id at F evaluated at G/G, and the Davis-Lück-assembly
map is the counit εi : i!i

∗ → id at E evaluated at c(G/G) ≃ BG.
Recall from [Lur17, Def. 4.7.4.13] that the square 4.7 is called left adjointable if

the canonical basechange transformation

β : i!p
∗ ηj−−−→ i!p

∗j∗j!
∼−−−→ i!i

∗c∗j!
εi−−−→ c∗j!

is an equivalence, i.e. if the two a priori distinct ways to form a functor OrG → Sp
from a given spectrum by forming vertical left adjoints in 4.7 are identified via the
basechange transformation.

Theorem 4.8. The square 4.7 is left adjointable, and the dashed composition (of
natural transformations of functors Fun(S,Sp)→ Fun(OrG,Sp))

i!i
∗c∗ c∗

i!p
∗j∗ c∗j!j

∗

∼

β

εj

identifies with the counit εi.
In particular, for any F : S → Sp and evaluating at the final object G/G, we

obtain a canonical identification

i!i
∗c∗F (G/G) ≃ BG+ ⊗ F (∗) F (BG)

c∗j!j
∗F (G/G) ≃ BG+ ⊗ F (∗)

αDL

∼
αWW



18

of the Davis-Lück-assembly map associated to c∗F : OrG → S → Sp and the Weiss-
Williams assembly map associated to F .

Proof. For the first statement, we first observe that, since left Kan extension (along

a fully faithful functor) gives a fully faithful functor SpBG → SpOrG , the unit
transformation ηj is always an equivalence. Thus, to recognize the basechange
transformation

β : i!p
∗ ηj−−−→ i!p

∗j∗j!
∼−−−→ i!i

∗c∗j!
εi−−−→ c∗j!

as an equivalence, it remains to see that the counit

εi : i!i
∗c∗F → c∗F

is an equivalence if F is in the image of j!, i.e. is left Kan extended along j : ∗ ↪→ S,
i.e. that c∗F is itself left Kan extended along BG ↪→ OrG if F was left Kan extended
along ∗ ↪→ S. By definition, we need to see that the induced contraction morphism

(<G/1>/G/H)▷ → S F−→ Sp

associated to c∗F is a colimiting cocone. It factorizes as

(<G/1>/G/H)▷ −→ (∗/BH)▷ −→ S F−→ Sp.

Here, the first functor is induced by c and an equivalence (by Lemma 4.9, proved
right after), and the following composition is the contraction morphism associated
to F and thus a colimiting cocone by the assumption that F is left Kan extended.

For the second statement, we consider the commutative diagram

i!i
∗c∗ i!p

∗j∗ i!i
∗c∗ c∗

i!p
∗j∗ i!p

∗j∗j!j
∗ i!i

∗c∗j!j
∗ c∗j!j

∗

∼

∼ εi

β

ηj

∼ εj

∼

εj

εiεi

εj

where commutativity of the left most triangle is the triangle identity, and the
squares commute by naturality of counits.

The third statement is then confirmed by unraveling the definitions of the Weiss-
Williams-assembly map as the counit εj , the Davis-Lück-assembly map as the
counit εi, evaluated at G/G and c(G/G) ≃ BG respectively, and using the sec-
ond part. □

We still owe the proof (and statement) of Lemma 4.9 to conclude the above proof
of Theorem 4.8.

Lemma 4.9. The functor of relative overcategories <G/1>/G/H −→ ∗/BH induced

by c : OrG −→ S, G/H 7→ BH is an equivalence.

Proof. We first observe that <G/1>/G/H sits in the diagram

<G/1>/G/H OrG/G/H
SBG

/G/H

<G/1> OrG SBG

where the left square is cartesian by definition and the right square is cartesian by
inspection (i.e. it is a strict pullback in sSet, which suffices since the right hand
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map is a right fibration). Thus the outer rectangle is cartesian and we are reduced
to showing that the transformation of cospans

(4.10)

<G/1> SBG
/G/H

SBG

<∗> S/BH

S
induced by the colimit-functor induces an equivalence on pullbacks.

Recall that the Straightening/Unstraightening equivalence relative to a space
X gives an identification Fun(X,S) ≃ S/X , under which the colimit-functor is

identified with the usual right fibration S/X → S.
6

Writing G
∫
G/H for the G-transport groupoid of G/H, we observe that the canon-

ical left fibration

G

∫
G/H → G

∫
G/G

straightens to the G-set G/H. Now since G
∫
G/H is equivalent to BH we may rewrite

the top row of 4.10 to

<∗ → BG>↪→ S/BG ← S/BH ,

where for the term on the right, SBG
/G/H

, we used the identification

(S/BG)/(BH→BG)
≃ S/BH

as in the proof of Proposition B.2, and under this identification the right vertical
map in 4.10 is the identity on S/BH .

Thus, we are considering the cube

P S/BH

Q S/BH

<∗ → BG> S/BG

<∗> S

=

where P → Q is the map of pullbacks we are interested in. The back and front
faces are cartesian by definition. Since the bottom face is a pullback square, the
composition of back and bottom face is cartesian, and thus so is the composition
of top and front face. This implies that the top face is already cartesian, and thus
the map P → Q is an equivalence, as a pullback of an equivalence. □

6This well-known result appears to lack a citeable reference. It holds since for X an ∞-
groupoid, every map Y → X is a left fibration. That the colimit of F : X → S is given by the
total space of its unstraightening is e.g. [Lur21, Tag 02VF].
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This concludes the proof of 4.8, and thus the identification of Weiss-Williams-
assembly maps and Davis-Lück-assembly maps. In particular we note that the
classical assembly map associated to the group ring R[G],

BG+ ⊗K(R)→ K(R[G]),

identifies with the Davis-Lück assembly map associated to the functor

OrG → Sp, G/H 7→ K(BH ⊗ PerfR).

Now, as above, the situation dualizes without resistance:

Definition 4.11. Given a group G and a functor H : OropG → Sp, the Davis-Lück-
coassembly map associated to G is the unit of the adjunction

SpOr
op
G SpBG

resBG↪→OrG

r

at E evaluated at G/G, i.e. the natural comparison map

E(G/G) E(G/1)hG.
γDL

Viewing this as the left Kan extension (and its comparison map) of the opposite
functor

OrG → Spop

we have the following corollary of Theorem 4.8.

Proposition 4.12. Given a functor F : Sop → Sp, the Weiss-Williams-coassembly
map

F (BG)→ map(BG,F (∗))
identifies with the Davis-Lück-coassembly map

F (∗hG)→ map(∗hG, F (G/1))

associated to
OropG

c−−→ Sop F−→ Sp.
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5. Commutative monoids in presentable ∞-categories

We collect notation and some well-known results about commutative monoids.
The reason for our interest is Proposition 5.6, which states that for any presentable,
preadditive ∞-category E , the ∞-category of objects of E equipped with an action
of the finite group G is equivalent to Fun×(L(G)op, E), where L(G) is the full
subcategory of commutative monoids with G-action which are free on a finite set.
We also describe this equivalence concretely, and proceed to use it in Chapter 12
to describe certain adjoints as Kan extensions.

Let C be an ∞-category admitting finite products. A commutative monoid in C
is a functor A from the category of pointed finite sets Fin∗ to C that satisfies the
Segal condition (going back to Graeme Segal’s seminal paper [Seg74]). The Segal
condition states that for i = 1, ..., n the characteristic maps ρi : n+ → 1+ together
induce an equivalence

A(n+)
∼−→

∏
n

A(1+).

The∞-category CMon(C) is then defined as the full subcategory of Fun(Fin∗, C)
of functors satisfying the Segal condition, and we abbreviate CMon(S) as CMon.
The ’underlying object’ or ’forgetful’ functor

u : CMon(C)→ C

is given by evaluation at 1+, and we think of A as equipping its underlying object
with a ’homotopy coherently associative and commutative’ multiplication via the
map

uA× uA
∼←− A(2+)

(2→1)+−−−−−→ uA.

This notion coincides with that of an E∞-algebra in C with respect to the cartesian
symmetric monoidal structure as in [Lur17, Sect. 2.4.2].

Note that the Segal condition immediately implies that u is conservative, i.e. that
a map of commutative monoids in C is an equivalence if and only if its underlying
map in C is an equivalence.

Proposition 5.1. The ∞-category CMon admits limits and sifted colimits, and
the functor u : CMon→ S preserves these.

Proof. By [Lur09, Cor. 5.1.2.3], evaluation at an object preserves all limits and
colimits as a functor from Fun(Fin∗,S), so it remains to check that the inclusion
CMon ↪→ Fun(Fin∗,S) preserves limits and sifted colimits, i.e. that the pointwise
limit or sifted colimit of functors satisfying the Segal condition also satisfies the
Segal condition. But this is clear since limits and sifted colimits commute with
finite products in the ∞-category of spaces, see [Lur09, Lemma 5.5.8.11 & Remark
5.5.8.12]. □

The next result we cite from [GGN15].

Proposition 5.2. CMon is a presentable, preadditive ∞-category.

Presentability follows from expressing CMon ⊆ Fun(Fin∗,S) as the local objects
with respect to a (small) set of maps, via some adjunction games. We refer to
[GGN15, Prop. 4.1] for details. Preadditivity follows from the fact that coproducts
in CMon are given by products in S by [Lur17, Cor. 3.2.4.7] (and so are products
in CMon, by Proposition 5.1). We again refer to [GGN15, Prop. 2.3] for a more
thorough discussion.

Proposition 5.1, Proposition 5.2, and the adjoint functor theorem [Lur09, Cor.
5.5.2.9] imply that u : CMon → S has a ’free’ left adjoint F , and then so does
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the forgetful functor CMonBG → CMon → S. We denote the left adjoint of this
composition by FG.

Next, for C presentable, we want to describe CMon(C) as the models of an
algebraic theory (or Lawvere theory) in the sense of [Cra10] or [GGN15, App. B],
that is, we identify an ∞-category T such that finite product-preserving functors
T→ C identify with commutative monoids in C. We immediately cover the case of
monoids equipped with an action by a group G.

Definition 5.3. L(G) denotes the full subcategory of CMonBG spanned by the
essential image of

Fin ↪→ S FG−−→ CMonBG .

We remark that L(G) is a full subcategory closed under finite coproducts of the

preadditive ∞-category CMonBG and thus preadditive.
Now recall from [Lur09, Sect. 5.5.8] that for an ∞-category C admitting small

coproducts, its free cocompletion under sifted colimits PΣ(C) is given by

j : C −→Fun×(Cop,S)
c 7−→MapC(−, c),

characterized by the universal property that for every ∞-category D admitting
sifted colimits, restriction along the Yoneda embedding induces an equivalence

FunΣ(PΣ(C),D)
∼−→ Fun(C,D),

where FunΣ(C,D) denotes the full subcategory of Fun(C,D) spanned by those
functors that preserve sifted colimits, see in particular [Lur09, Prop. 5.5.8.15 &
Cor. 5.5.8.17].

Proposition 5.4. CMonBG is the free cocompletion of L(G) under sifted colimits,
i.e. the unique sifted functor Φ rendering the diagram

L(G)

PΣ(L(G)) CMonBG

j

Φ

commutative is an equivalence.

Proof. Φ is fully faithful: By Proposition 5.1 (and the fact that res∗→BG : CBG → C
preserves all colimits), the forgetful functor

u : CMonBG → S

preserves sifted colimits. Thus, using the fact that in S, sifted colimits commute
with finite products, we confirm that the corepresented functor MapCMonBG(FG(x),−)
preserves sifted colimits, for x a finite set:

MapCMonBG(FG(x), colim
S

As) ≃ MapS(x, u colim
S

As)

≃
∏
x

colim
S

uAs

≃ colim
S

∏
x

uAs ≃ colim
S

MapS(x, uAs)

≃ colim
S

MapCMonBG(FG(x), As).

Since every object of PΣ(L(G)) is equivalent to a sifted colimit of representables
(see [Lur09, Cor. 5.1.5.8], whose proof adapts without change), we write arbitrary
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objects of PΣ(L(G)) as

A ≃ colim
S

jas, B ≃ colim
R

jbr

for S,R sifted. We then factorize

MapPΣ(L(G))(A,B) MapCMonBG(ΦA,ΦB)

limS colimR MapL(G)(as, br) limS colimR MapCMonBG(as, br).

Φ

∼

∼

∼

Here, the left vertical equivalence is a consequence of the Yoneda lemma (and
PΣ(C) being a full subcategory closed under sifted colimits of P(C) = Fun(Cop,S)).
The lower horizontal equivalence is the definition of L(G) as a full subcategory of

CMonBG, and the right vertical equivalence uses the above preservation of sifted
colimits of MapCMonBG(as,−) and the universal property of Φ.

Φ is essentially surjective: We need to show that CMonBG is generated under
sifted colimits by L(G). The monadic bar construction of the monad u◦FG associ-

ated to the adjunction expresses any A ∈ CMonBG as the geometric realization of
a simplicial object (i.e. a sifted colimit) taking values in the essential image FG(S)
(see [Lur17, Sect. 4.7], in particular Proposition 4.7.3.14). But of course any space
is a sifted colimit of finite sets (since infinite sets are filtered colimits of finite sets),
so we conclude. □

Remark 5.5. Let us describe Φ concretely: The underlying space of ΦE for E a
product preserving functor

[E : L(G)op → S] ∈ PΣ(L(G))

is equivalent to its evaluation at FG(1).
This holds since ev(FG(1)) : PΣ(L(G))→ S factorizes as

Fun×(L(G)op,S) ↪→ Fun(L(G)op,S) ev(1)−−−→ S
both of which preserve sifted colimits by [Lur09, Prop. 5.5.8.10.(4)]. So does the

functor u : CMonBG → S, thus the functors

uΦ, ev(FG(1)) : PΣ(L(G))→ S
are equivalent if they agree on representable functors E ≃ MapL(G)(−, x). In this
case, uΦE ≃ ux by definition of Φ, and

ev(FG(1))E ≃ MapL(G)(FG(1), x) ≃ MapS(1, ux) ≃ ux

by the adjunction.
Further, let us describe the action maps on uΦE ∈ SBG: For E ≃ MapL(G)(−,FG(1)),

the action by g ∈ G is exactly the action by g on uFG(1), which under the equiva-
lence

uFG(1) ≃ MapL(G)(FG(1),FG(1))

corresponds to the pushforward along the (equivariant!) map FG(1)
·g−→ FG(1),

given on underlying commutative monoids (without action) as⊕
G

F(1) ·g−→
⊕
G

F(1),

permuting the factors by right multiplication with g. By equivariance, the map
on MapL(G)(FG(1),FG(1)) induced by pushforward along ·g on the target and
the map induced by pullback along ·g on the source agree. This description then
carries over to arbitrary functors E : L(G)op → S by extending along finite and
sifted colimits.
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Proposition 5.6. For C any presentable ∞-category, there is an equivalence of
categories

Fun×(L(G)op, C) ≃ Fun(BG,CMon(C)).
If in addition C is preadditive, we obtain an equivalence

Fun×(L(G)op, C) ≃ CBG.

Proof. For the Lurie tensor product of presentable ∞-categories, we have equiva-
lences

Fun(K,S)⊗ C ≃ Fun(K, C),(5.7)

Fun×(K,S)⊗ C ≃ Fun×(K, C),(5.8)

CMon⊗ C ≃ CMon(C),(5.9)

all of which are proved in essentially the same fashion: Use the the description
C ⊗ D ≃ FunR(Dop, C) of [Lur17, Prop. 4.8.1.17] to identify both sides of each
equivalence with the same full subcategory of Fun(K × Cop,S), see also [GGN15,
Thm. 4.6].

With these, we tensor the equivalence of Proposition 5.4 with C to obtain

Fun×(L(G)op,S)⊗ C Fun(BG,CMon)⊗ C

Fun×(L(G)op, C) Fun(BG,CMon(C)).

∼

∼ ∼

The second claim of the proposition is true since for C preadditive, the forget-
ful functor u : CMon(C) → C is an equivalence, see [GGN15, Prop. 2.3(iv)]. Said
informally: commutative monoids are E∞-algebras with respect to the cartesian
symmetric monoidal structure, which, by preadditivity, is equivalent to the co-
cartesian symmetric monoidal structure. But in the latter, there is one and only

one coherent multiplication for any object, namely the fold map c
∐

c
▽−→ c. □

Remark 5.10. The description of Remark 5.5 extends naturally to this more
general situation, i.e. the equivalence

Fun×(L(G)op, E) ∼−→ EBG

for E preadditive sends a functor E to the object E(FG(1)) with action by g given
by

E(FG(1)
·g←− FG(1)).

In a preadditive ∞-category E , the mapping spaces MapE(a, b) are canonically
equipped with the structure of a commutative monoid, given on maps f, g : a → b
by

f ⊕ g : a
△−→ a⊕ a

f
∐

g−−−→ b⊕ b
▽−→ b.

More formally, we claim that we have for E preadditive a canonical lift

Fun×(Eop,CMon)

E Fun×(Eop,S)

u

j

where again j denotes the Yoneda embedding c 7→ MapE(−, c). Since PΣ(E) is
generated by the representables under sifted colimits, this suggests (and is indeed
implied by) the following.
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Proposition 5.11. For E preadditive, the forgetful functor

Fun×(Eop,CMon)→ Fun×(Eop,S) = PΣ(E)
is an equivalence.

Proof. Via the arguments explained in the proof of Proposition 5.6, we see

Fun×(Eop,CMon) ≃ Fun×(Eop,S)⊗ CMon

≃ CMon(Fun×(Eop,S)),
so the map in question identifies with the forgetful functor

u : CMon(PΣ(E))→ PΣ(E).
Thus, we are reduced to recognizing PΣ(E) as preadditive, again as explained in
the proof of Proposition 5.6, following [GGN15, Prop. 2.3(iv)]. For sifted colimits
of representables, the relevant comparison map is an equivalence:

(colimS jas)
∐
(colimR jbr) (colimS jas)× (colimR jbr)

colimS×R(jas
∐

jbr) colimS×R(jas × jbr)

colimS×R(j(as
∐

br)) colimS×R(j(as × br))

∼

∼ ∼

∼

∼

Here, the upper left equivalence is commuting the colimit with the coproduct,
combined with the fact that sifted ∞-categories are weakly contractible ([Lur09,
Prop. 5.5.8.7]) and colimits of weakly contractible shape of constant functors agree
with their value ([Lur09, Cor. 4.4.4.10]). The lower left equivalence is the fact
that j : E → PΣ(E) preserves finite coproducts by [Lur09, Proposition 5.5.8.10(2)].
The upper right equivalence then is commuting sifted colimits with finite products
(which holds since the colimits are equivalently computed in the∞-topos P(E), see
[Lur09, Remark 5.5.8.12]), and the lower right equivalence is the Yoneda embed-
ding preserving products. Finally, the lower horizontal equivalence is of course the
assumption of E being preadditive.

Since PΣ(E) is generated by the representables under sifted colimits, we conclude.
□
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6. The ∞-category of spans

Specializing the approach of [Bar17], we define an∞-category of spans associated
to any ∞-category C admitting pullbacks. Its objects will agree with those of C,
while a morphism c→ d will be given by span in C, i.e. a diagram

e

c d.

Composition will correspond to the formation of pullbacks, so that a functor

Span(C)→ D

encodes both a covariant and a contravariant functoriality in C with the same value
on objects, and the following compatibility: If

v

u g
f

is a pullback square in C, we have an equivalence

g∗ ◦ f∗ ≃ v∗ ◦ u∗.

Of course, there is actually an infinite hierarchy of coherences hidden in the functor
Span(C) → D, but one example where this intuition can be made precise is in the
setting of adjoint functors and adjointable squares as in Definition 4.6. This is
Clark Barwick’s Unfurling machinery, see [Bar17, Ch. 11].
Let us begin by associating to a poset P its poset of twisted arrows

Tw(P ) := {(p, q) | p ≤ q} ⊂ P × P op.

Of course Tw : Poset → Poset is easily seen to be a functor, and as usual we
regard Tw(P ) as an ∞-category without additional notation. We also remark that
this definition extends without much hassle to general categories and even to ∞-
categories (see [Bar17, Ch. 2]), but we won’t have need for either. Note that in
loc.cit., the author refers to the opposite of our Tw(P ) as the twisted arrow category.
We follow the convention of e.g. [Lur21].

To illustrate, Tw([3]) is the category

03

02 13

01 12 23

00 11 22 33,

and an ordered inclusion [k]
i
↪−→ [n] picks exactly the subdiagram Tw([k]) ↪→ Tw([n])

spanned by the vertices with both indices in the image of i.
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Given an∞-category C, a functor Tw([n])→ C is called cartesian if every square

pq

pq′ p′q

p′q′

for p ≤ p′ ≤ q′ ≤ q is sent to a pullback in C, and we let Homcart(Tw([n]), C) denote
the set of cartesian functors.

Certainly, the association

[n] 7→ Homcart(Tw([n]), C)
defines a simplicial set, and it is a theorem of Clark Barwick that if C admits
pullbacks, this indeed defines an ∞-category [Bar17, Ch. 3].

Definition 6.1. Given an∞-category C which admits pullbacks, the span-category
of C, denoted Span(C), is the ∞-category given by the simplicial set

[n] 7→ Homcart(Tw([n]), C).

Barwick refers to this as the effective Burnside category Aeff , but to the present
author it appears more natural to call it the span-category of C. We remark that
a pullback-preserving functor C → D defines a functor Span(C) → Span(D) in the
obvious way. For concreteness, let us state that the objects of Span(C) are exactly
the objects of C, edges are spans x← z → y, and 2-simplices are cartesian diagrams
of the form

02

01 12

00 11 22,

with colors indicating face maps corresponding to

1

0 2.

Remark 6.2. The mapping spaces in Span(C) are indeed given by what one would
reasonably expect, namely by the ∞-groupoid of spans, or more precisely said

MapSpan(C)(x, y) ≃ (C/{x,y})∼.
This is an immediate consequence of the way Barwick constructs the span-category,
so we should briefly comment on it. He defines a bisimplicial set, i.e. a functor

∆op → Fun(∆op,Set)

by

[n] 7→ (Homcart(Tw([n]), C))∼

where Homcart(Tw([n]), C), as usual, denotes the simplicial set (or ∞-category) of
cartesian functors, a full subcategory of Fun(Tw([n]), C). He then proceeds to prove
that, if C admits pullbacks, this bisimplicial set is in fact a complete Segal space,
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a notion introduced by Charles Rezk in [Rez01]. Complete Segal spaces model
homotopy theories in essentially the same way ∞-categories do, and a concrete
Quillen equivalence to the model category of∞-categories was established by Joyal
and Tierney [JT07]. Constructing an equivalent∞-category from a complete Segal
space X is as simple as one could hope: It is the simplicial set given by the 0’th
row of X, i.e. the simplicial set whose n-simplices are the vertices of Xn, see
[JT07, Ch. 4].

Note that for the complete Segal space above, this gives exactly the simplicial
set

Span(C) : [n] 7→ Homcart(Tw([n]), C).
Mapping spaces in complete Segal spaces are described in [Rez01, 5.1], as the (point-
set = homotopy, see loc.cit) fibers of the map

X1 X0 ×X0

(Homcart(Tw([1]), C))∼ (Homcart(Tw([0]), C))∼

Fun(∆0 ⋆ (∆0
∐

∆0), C)∼ C∼ × C∼

d1,d0

= =

ev00,ev11

∼= ∼=

where in the latter step we used that being cartesian is vacuous for functors out of

Tw([1]) ∼= ∆0 ⋆ (∆0
∐

∆0).

The fiber of

Fun(∆0 ⋆ (∆0
∐

∆0), C)→ C × C
at x, y identifies with C/{x,y}. Now recall that C 7→ C∼ is right adjoint to the
inclusion S → Cat∞ and thus commutes with taking fibers and the formation of
pullbacks, so we conclude

MapSpan(C)(x, y) ≃ (C/{x,y})∼.

Remark 6.3. The span-category comes equipped with natural functors

−∗ : C −−→ Span(C),
−∗ : C −−→ Span(C)op,

τ : Span(C) ∼−−→ Span(C)op.

The first two are defined, on simplices, by precomposition with the natural maps

Tw([n])
p1−→ [n], Tw([n])

p2−→ [n]op

respectively, and the latter is induced by

Tw([n]op) [n]
op × [n]

Tw([n]) [n] × [n]
op

.

∼ swap

These act exactly as one would guess: E.g. for a morphism f : x→ y, we have

f∗ = x
=←− x

f−→ y, f∗ = y
f←− x

=−→ x,

and τ(σ∗) = σ∗ for any simplex σ of C.

Under mild conditions on the category C, the span-category Span(C) is preaddi-
tive.
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Definition 6.4. An ∞-category C is disjunctive if in addition to admitting pull-
backs it

• admits finite coproducts,
• which are disjoint, i.e.

∅ Y

X X
∐

Y

is a pullback square for any two objects X,Y in C,
• and universal, i.e. given any morphism T → S and two objects X,Y over
S, the square

(6.5)

X ×S T
∐

Y ×S T X
∐

Y

T S

is a pullback square.

The categories we have in mind are the usual suspects, FinG and FreeG.

Proposition 6.6. [Bar17, Proposition 4.3]. Given a disjunctive ∞-category C, the
span-category Span(C) is preadditive, with sums given by coproducts in C.
Proof. In loc.cit., Clark Barwick shows that the functor −∗ : C → Span(C) preserves
finite coproducts if C is disjunctive. That these are exhibited as finite products by
the natural maps is then a consequence of the duality-equivalence τ : Span(C) ∼−→
Span(C)op preserving objects. □

We close this chapter with a technical lemma, used in Chapter 12 to compare

certain Kan extensions. We write β∗α∗ for a generic span x
β←− z

α−→ y.

Lemma 6.7. Let C be an ∞-category admitting pullbacks, and c ∈ C. Then

C/c → Span(C)/c, σ 7→ σ∗

(i) is fully faithful.
(ii) admits a left adjoint, given on objects as e∗f∗ 7→ f∗.

Proof of (i). We are looking to show that, for any two morphisms x
f−→ c and y

g−→ c
of C, the map

MapC/c
(f, g) −−→ MapSpan(C)/c(f∗, g∗)

is an equivalence. By proposition B.2, which describes the mapping spaces of
overcategories as fibers of mapping spaces, this map is the left vertical map in the
following diagram of horizontal fiber sequences:

(6.8)

MapC/c
(f, g) MapC(x, y) MapC(x, c)

MapSpan(C)/c(f∗, g∗) MapSpan(C)(x, y) MapSpan(C)(x, c)

g◦−

g∗◦−

with fibers taken at f ∈ MapC(x, c) and f∗ ∈ MapSpan(C)(x, c) respectively. In
remark 6.2, we have identified the mapping spaces of the span-category as

MapSpan(C)(x, y) ≃ (C/{x,y})∼ = (C/x ×C C/y)∼.
Under this equivalence, composition with g∗ corresponds to the map

(C/x ×C C/y)∼
id×id(g◦−)−−−−−−−−−→ (C/x ×C C/c)∼,
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as seen from the cartesian diagram

02

01 12

00 11 22.

= β

α β

=

g

Again, since C 7→ C∼ is right adjoint to the inclusion S ↪→ Cat∞ (and preserves
the terminal object), it commutes with taking fibers and the formation of pullbacks,
and we may rewrite the lower fiber sequence in diagram 6.8 as

MapSpan(C)/c(f∗, g∗)→ (C/x)∼ ×C∼ (C/y)∼ → (C/x)∼ ×C∼ (C/c)∼.

Since the map with respect to which the fiber is computed is the identity on the
first coordinate, projection to the second induces an equivalence on fibers, and since
further the fiber (taken in Cat∞) of

C/y
g◦−−−−−→ C/c

is already in S (e.g. as a consequence of Proposition B.2), we can do without the
(−)∼ to arrive at the diagram of fiber sequences

MapC/c
(f, g) MapC(x, y) MapC(x, c)

MapSpan(C)/c(f∗, g∗) C/y C/c.

g◦−

g∗◦−

Since the right two vertical maps are the canonical inclusions (sending a map x→ y
to itself), we recognize the familiar fiber sequences defining (right) mapping spaces
and extend vertically down to the commutative square of (horizontal and vertical)
fiber sequences

MapC/c
(f, g) MapC(x, y) MapC(x, c)

MapSpan(C)/c(f∗, g∗) C/y C/c

∗ C C.

g◦−

g∗◦−

=

Thus the dashed map is an equivalence, and we conclude. □

Proof of (ii). The left adjoint Span(C)/c → C/c is, on simplices, induced by pre-
composition with

[n+ 1]→ Tw([n+ 1]), i 7→ (i, n+ 1).

Note that this is natural in [n], with respect to the natural identifications [n] ⋆ [0] = [n+ 1].
To check that this provides the left adjoint to the (fully faithful, by (i)) functor

C/c → Span(C)/c, we would like to see a natural equivalence

MapSpan(C)/c(f∗, g∗)→ MapSpan(C)/c(e
∗f∗, g∗),
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for any
x y

x′ c, c.

e f g

As above, the left hand side is the fiber of

(C/x ×C C/y)∼
id×(g◦−)−−−−−−→ (C/x ×C C/c)∼

at (id, f), and by an analogous computation, the right hand side is the fiber of

(C/x′ ×C C/y)∼
id×(g◦−)−−−−−−→ (C/x′ ×C C/c)∼

at (e, f). We obtain a map of fiber sequences

MapSpan(C)/c(f∗, g∗) (C/x ×C C/y)∼ (C/x ×C C/c)∼

MapSpan(C)/c(f∗e
∗, g∗) (C/x′ ×C C/y)∼ (C/x′ ×C C/c)∼

where the vertical maps are given by

(α, β) 7→ (e ◦ α, β).
In the same way as in the proof of (i), we argue that projection to the second
coordinate induces an equivalence on fibers on either column, and thus conclude
that the dashed map is an equivalence. □
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7. Mackey Functors

Let E be a preadditive∞-category. For brevity, we will write SpanG for Span(FinG).
By Proposition 6.6, this is a preadditive ∞-category.

Definition 7.1. A G-Mackey functor with coefficients in E is a sum-preserving
functor

M : SpanopG −−→ E .
These assemble into an ∞-category MackG(E) as the full subcategory

Fun⊕(SpanopG , E) ↪→ Fun(SpanopG , E).

As the group G and the coefficient category will usually be clear from context,
we will often refer to these as just Mackey functors. The evaluation at an object
G/H of SpanG we will sometimes refer to as the fixed points of M, alluding to
Theorem 1.3.

Observation 7.2. Perhaps unsurprisingly, MackG(E) is closed under all limits and
colimits (that exist in E) as a full subcategory of Fun(SpanopG , E), since any colimit of
finite-coproduct-preserving functors preserves finite coproducts, and vice-versa for
limits. This implies that for any object x of Span(FinG), evaluation at x preserves
all limits and colimits of Mackey functors.

Since SpanG is equivalent to its opposite by the self-duality τ of Remark 6.3,
choosing the domain category to be SpanopG instead of SpanG is purely notational
convention. Our choice is motivated by considering MackG(E), for E presentable,
as a tensor product of presentable ∞-categories: Since SpanG is small and admits
finite coproducts, its completion under sifted colimits

PΣ(SpanG) = Fun×(SpanopG ,S)

is presentable by [Lur09, Prop. 5.5.8.10.(1)]. By the considerations in the proof
of Proposition 5.6 (and since product-preserving functors between preadditive ∞-
categories are precisely sum-preserving) we have

MackG(E) ≃ PΣ(SpanG)⊗ E ,

a perspective we will exploit heavily.
Given an additive functor F : E → D between preadditive categories, we obtain

a functor

MackG(E) −→ MackG(D)
induced by postcomposition. If C,D are presentable and F preserves colimits (i.e.
we are describing functoriality in the full subcategory of PrL on the preadditive
∞-categories), the above functor is equivalently given by

PΣ(SpanG)⊗ E
PΣ(SpanG)⊗F−−−−−−−−−→ PΣ(SpanG)⊗D.

Definition 7.3. Given a Mackey functorM, we extract an underlying OrG-object
by restriction, i.e. we define u⃗M : OrG → E as the composition

OrG ↪→ FinG
−∗

−−→ SpanopG
M−−→ E .

Dually, we have an underlying OropG -spectrum defined as the composition

⃗uM : OropG ↪→ Finop
G

−∗−−→ SpanopG
M−−→ E .

Restricting one more time, we get an underlying object with G-action uM : BG→ E
as the composition

BG =<G/1>op↪→ OropG
⃗uM−−−→ E .
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Remark 7.4. A priori, there is another way to extract an underlying object with
G-action from a Mackey functorM, along the intermediate step u⃗M: Restriction
along

BGop =<G/1>↪→ FinG
−∗

−−→ SpanopG ,

gives an object uM∈ EBGop

. Precomposing with the equivalence BG ≃ BGop then
identifies this G-object with uM, i.e. using the notation introduced just before
Proposition 3.9, we have

uM≃ uM.

We see this by displaying a natural homotopy between the morphisms g∗ and g−1
∗

of Span(FinG), namely the 2-simplex

.

= g−1

= = g =
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8. Spectral Mackey Functors

The most important coefficient category for Mackey functors is the (presentable,
stable and thus additive) ∞-category of spectra Sp. Indeed, the whole motivation
for developing this theory is the insight that MackG(Sp) models genuine stable
equivariant homotopy theory, which originally goes back to a triple of papers by
Bertrand Guillou and Peter May [GM17a] [GM17b] [GM20]. Analyzing the struc-
ture of the stable presentable ∞-category

MackG(Sp) = PΣ(SpanG)⊗ Sp

directly, we prepare for a modern interpretation of this result in this chapter. Ev-
erything here is apparently well-known to experts, but we failed to find a published
account for much of it. We want to acknowledge and thank Maxime Ramzi for
many helpful conversations on this material.

First, we contemplate the relation MackG(Sp) holds to the ∞-category of G-
spaces. We have an ’underlying G-space’-functor Ω∞

G : MackG(Sp) → SG given as
the composition

MackG(Sp) PΣ(SpanG) SG

Fun⊕(SpanopG ,Sp) Fun×(SpanopG ,S) Fun×(Finop
G ,S).

= = =

Here the first functor is given by postcomposition with Ω∞ : Sp→ S and the second
functor is given by precomposition with

−∗ : Fin
op
G → SpanopG .

Thus, for any spectral Mackey functorM, we have that its underlying G-space has
fixed points at H the underlying space of its evaluation at G/H, i.e. that

(8.1) (Ω∞
GM)H ≃ Ω∞(M(G/H)).

We claim that the two functors defining Ω∞
G admit left adjoints, so we obtain an

adjunction

SG : SG MackG(Sp) : Ω
∞
G

which we want to describe concretely.7

Let us first consider the second step. To show that PΣ(SpanG) → SG admits a
left adjoint, we check the following lemma.

Lemma 8.2. Given ∞-categories C,D which admit finite coproducts and a functor
C → D preserving these, the restriction

Fun×(Dop,S) res×−−−→ Fun×(Cop,S)

admits a left adjoint, given by the covariant functoriality present on the construc-
tion Fun×(−op,S) = PΣ(−), i.e. the unique functor preserving sifted colimits that
renders the diagram

C D

PΣ(C) PΣ(D)

j j

commutative.

7The classical notation in genuine G-spectra for this functor would be T 7→ Σ∞
G (T+). In

[Bar17], Barwick denotes it as ST , see also Remark 8.4.
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Proof. For the analogous statement regarding the whole category of presheaves
Fun(−op,S) = P(−), this is [Lur09, Prop. 5.2.3.6].

The restriction to the full subcategory PΣ(C) ↪→ P(C) (i.e. to sifted colimits
of representables) of the unique colimit preserving functor P(C) → P(D) (which
extends C → D along the Yoneda embedding) lands in the full subcategory of P(D)
spanned by sifted colimits of representables, i.e. PΣ(D), and this is of course the
functor PΣ(C)→ PΣ(D) claimed to give the left adjoint.

On the other hand, since C → D preserves finite coproducts, the restriction
functor restricts to a functor

Fun×(Dop,S) res×−−−→ Fun×(Cop,S),

so the adjunction of [Lur09, Prop. 5.2.3.6] restricts to the claimed adjunction. □

This identifies the left adjoint to

Fun×(SpanopG ,S) res×−−−→ Fun×(Finop
G ,S)

as the unique functor SG → PΣ(SpanG) that preserves sifted colimits and restricts
to FinG → SpanG.

Considering the first step, i.e. the functor

Fun⊕(SpanopG ,Sp)
Ω∞

∗−−→ Fun×(SpanopG ,S),

we first observe that the left adjoint to Ω∞, i.e. Σ∞
+ : S → Sp, does not preserve

products, so the desired left adjoint cannot be constructed ’pointwise’. However,
we recall that Ω∞ : Sp→ S factorizes as the composition of right adjoints

(8.3) Sp
τ≥0−−→ Sp≥0 ≃ CMongp ↪→ CMon

u−→ S

so the functor we are interested in factorizes as

Fun⊕(SpanopG ,Sp)→ Fun⊕(SpanopG ,CMon)→ Fun×(SpanopG ,S).

We checked that the second functor here is an equivalence in Proposition 5.11.
Now the left adjoint to Sp→ CMon is given by the composition of left adjoints

of 8.3, that is in turn: group completion

−gp : CMon→ CMongp,

the equivalence

CMongp
∼−→ Sp≥0

and the natural inclusion

Sp≥0 ↪→ Sp.

We will also refer to this composition CMon→ Sp as just group completion.
As left adjoints between preadditive categories, these preserve finite sums, and

thus the desired left adjoint

Fun⊕(SpanopG ,CMon)→ Fun⊕(SpanopG ,Sp)

is given pointwise, i.e. by postcomposition with the group completion functor
CMon→ Sp.

We thus have constructed the desired left adjoint SG, sitting in the diagram

FinG SpanG

SG = PΣ(FinG) PΣ(SpanG) PΣ(SpanG)⊗ Sp = MackG(Sp).

j j

SG
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Remark 8.4. We will also write SG for the dashed composition SpanG → MackG,
which explicitly models the wrong-way maps present on SG[G/H]. It is the restric-
tion to SpanG of the left adjoint to

Fun⊕(SpanopG ,Sp)
Ω∞◦−−−−−→ Fun×(SpanopG ,S).

It is exactly this left adjoint that Barwick in [Bar17] refers to as Mackey stabiliza-

tion, denoted T 7→ ST .

Remark 8.5. Let us be explicit about our notational choices: We have constructed
a functor SG with domain SG (or SpanG) and valued in G-Mackey functors. We
shall write square brackets for the evaluation of this functor, i.e. for a finite G-set
T , we have SG[T ] ∈ MackG(Sp). As this is itself a Mackey functor, we will again
evaluate it on finite G-sets, writing standard brackets, i.e. SG[T ](S) ∈ Sp.

In the special case of SG[G/G], we will simply write SG for this Mackey functor.

Example 8.6. To summarize, let us compute SG[T ] for a finite G-set T , i.e. a
representable in SG = Fun×(Finop

G ,S). Since SG is generated under sifted colimits
by representables and SG preserves these, this describes SG completely.

The first left adjoint PΣ(FinG) → PΣ(SpanG) sends it to MapSpanG
(−, T ) by

Lemma 8.2.
The second left adjoint, i.e. the inverse of

u : Fun⊕(SpanopG ,CMon)→ Fun×(SpanopG ,S)

just remembers that MapSpanG
(S, T ) is canonically a commutative monoid HomSpanG

(S, T ),
since SpanG is preadditive.

The third left adjoint

Fun⊕(SpanopG ,CMon)→ Fun⊕(SpanopG ,Sp)

then group completes this commutative monoid at every S ∈ SpanG and under-
stands it as a (connective) spectrum, i.e. we have

SG[T ](S) ≃ HomSpanG
(S, T )gp

≃ (FinG/{S,T})
∼,gp ∈ Sp.

Here, the second equivalence is Remark 6.2, and the addition (with respect to which
we group complete) is easily seen to be given by the coproduct on the source, i.e. for
U → S×T and V → S×T , their sum in (FinG/{S,T})

∼ is given by U⨿V → S×T ,

as a consequence of sums in SpanG given by coproducts.
More concretely, let us compute the fixed points and the underlying spectrum

of the equivariant sphere SG := SG[G/G]: We have

SG(G/G) ≃ HomSpanG
(G/G,G/G)gp

≃ (FinG/{G/G,G/G})
∼,gp

≃ Fin∼,gp
G .

The first equivalence is the above description of the functor SG. The second equiv-
alence is Remark 6.2. The last equivalence follows from G/G being final in FinG.
Since sums in SpanG are given by coproducts (i.e. disjoint unions) in FinG and the
monoid structure on HomSpanG

(S, T ) comes from the preadditivity of SpanG, the
relevant monoid structure on Fin∼

G is the one given by disjoint union of G-sets.
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On the other hand, we have

SG(G/1) ≃ HomSpanG
(G/1, G/G)gp

≃ (FinG/{G/1})
∼,gp

≃ Fin∼,gp ≃ S.

Here, in the second to last step we used the equivalence

FinG/{G/1} FinG Fin,

∼

(−)/G

since a G-set equipped with a map into G/1 is necessarily free, and every orbit is
assigned a basepoint by its identification with G/1. Note that this identifies the
monoid structure induced from disjoint union of G-sets/sets. We also see that the
G-action on SG(G/1) (which is then given by functoriality in G/1 on FinG/{G/1}) is
trivial.

Remark 8.7. Taking the equivalence MackG(Sp) ≃ SpG for granted, this recovers
(modulo the multiplicative structure) the classical statement that the underlying
spectrum of the equivariant sphere SG is the sphere spectrum with trivial action,
but surprisingly its genuine fixed points model (at π0) the G-Burnside ring.

Elaborations on this argument then identify the Mackey functor (valued in
Abelian groups) π?

0SG with the Mackey functor structure present on the ?-Burnside
ring by induction/restriction. One may also recover the Tom-Dieck splitting from
this perspective.

Thinking of the Mackey functors SG[G/H] as representable Mackey functors,
naturally valued in Sp, we expect the following refinement of the Yoneda lemma:

Proposition 8.8. ForM∈ MackG(Sp), we have an equivalence of spectra

M(G/H) ≃ mapG(SG[G/H],M),

natural in G/H ∈ SpanG.

Here we write, for brevity, mapG(M,N ) for the mapping spectrum associated
to MackG(Sp) being stable. Some preparatory recollections: Since MackG(Sp) is
presentable, we have another way to construct the mapping spectrum: Sp is a
presentably symmetric monoidal ∞-category (i.e. a commutative algebra object in
PrL with respect to the Lurie tensor product), so MackG(Sp) = PΣ(SpanG) ⊗ Sp
is canonically tensored over Sp, classified by a functor

MackG(Sp)× Sp→ MackG(Sp)

preserving colimits in either variable. Thus, fixing anM ∈ MackG(Sp), we have a
colimit-preserving functor

Sp
M⊗−−−−−→ MackG(Sp)

whose right adjoint we claim is given by the mapping spectrum mapG(M,−).
Indeed, the left adjointM⊗− is characterized as the unique colimit-preserving

functor Sp → MackG(Sp) sending the sphere spectrum S to M, so we obtain a
natural equivalence of mapping spectra

mapG(M⊗A,N ) ≃ mapSp(A,mapG(M,N ))

by observing that both sides agree on A = S and (in the variable A) transform
colimits to limits, see Appendix B.2. Applying Ω∞ to these mapping spectra gives
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the desired natural equivalence of mapping spaces characterizing the adjunction

Sp MackG(Sp).
M⊗−

mapG(M,−)

In the other variable, we get another adjunction, now for any fixed A ∈ Sp:

MackG(Sp) MackG(Sp)
−⊗A

FA

where we claim (FAM)(G/H) ≃ mapSp(A,M(G/H)).
Indeed, for stable ∞-categories of the form Fun(K,Sp) the tensoring

Fun(K,Sp)
−⊗A−−−→ Fun(K,Sp)

is computed pointwise, so its right adjoint is also computed pointwise, i.e. as the
functor

Fun(K,Sp)
F 7→mapSp(A,F−)
←−−−−−−−−−−−− Fun(K,Sp).

If K admits finite products, both these functors restrict to functors Fun×(K,Sp)→
Fun×(K,Sp), so specializing to MackG(Sp) = Fun×(SpanopG ,Sp) yields the claimed
description of the right adjoint .

Proof of Proposition 8.8. Let us think about G/H as an object of FinG first. We
have the following chain of equivalences of mapping spaces, for A ∈ Sp:

MapSp(A,M(G/H)) ≃ MapSG

(
G/H, MapSp(A,M(−))

)
≃ MapSG

(
G/H, Ω∞(FAM(−))

)
≃ MapSG

(
G/H, Ω∞

G (FAM)
)

≃ MapG
(
SG[G/H], FAM

)
≃ MapG

(
SG[G/H]⊗A, M

)
≃ MapSp

(
A, mapG(SG[G/H],M)

)
The first equivalence is the Yoneda lemma for the representable functor G/H ∈ SG.
The second is the given description of FA(M) and the compatibility of mapping
spaces and mapping spectra. The third is the compatibility of taking fixed points
and underlying spaces 8.1. The rest is applying the various adjunctions. Every step
is natural in G/H, A, andM, so the Yoneda lemma lets us conclude.

The proof as written confirms a natural equivalenceM(−) ≃ mapG(SG[−],M)
of functors Finop

G → Sp, but notice how everything was purely formal - taking
Remark 8.4 into account and replacing SG = PΣ(FinG) by PΣ(SpanG) where nec-
essary, we obtain the desired natural equivalence of functors SpanopG → Sp. □

Remark 8.9. Given a presentable stable ∞-category C, recall that a set of ob-
jects {Xα} is called a set of generators if for every Y ∈ C, Y is 0 if and only if
mapC(Xα, Y ) ≃ 0 for all Xα. This nomenclature is justified by the fact that this
property is equivalent to the property that the smallest stable subcategory that
is closed under colimits and contains {Xα} is all of C. This is proved e.g. in
[MNN17, Lemma 7.6].

Corollary 8.10. For T ∈ SpanG, SG[T ] is a co mpact object of MackG(Sp), and
{SG[T ]}T∈SpanG

is a set of generators. Thus so is the set of orbits SG[G/H].

Proof. For compactness, we need to show that mapping out of SG[T ] preserves
filtered colimits. ForM≃ colimSMs a filtered colimit in MackG(Sp), we have by
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the above Proposition 8.8

MapG(SG[T ], colim
S
Ms) ≃ Ω∞((colim

S
Ms)(T ))

≃ colim
S

Ω∞Ms(T )

≃ colim
S

MapG(SG[T ],Ms),

since evaluation preserves all colimits by Observation 7.2, and the functor

Ω∞ : Sp→ S

preserves filtered colimits.
To see that the SG[T ] generate MackG(Sp), we need to see that M is 0 if and

only if mapG(SG[T ],M) is 0 for all T . Certainly,M∈ MackG(Sp) is 0 if and only
if it is 0 in Fun(SpanopG ,Sp) if and only if all its evaluations are 0.

Since every SG[T ] is a finite sum of orbits (as the functor SG preserves coprod-
ucts), the second part is immediate. □

Remark 8.11. That the SG[G/H] generate MackG(Sp) in the above sense implies
that a natural transformation α of colimit preserving functors MackG(Sp)→ D for
D stable and cocomplete is an equivalence if it is an equivalence at the SG[G/H].
This is so since the subcategory of objects on which α is an equivalence is stable,
closed under colimits and contains a set of generators, so is all of MackG(Sp).

8.1. Tensor products of Mackey functors. Under mild conditions on C, the
∞-category Span(C) carries a natural symmetric monoidal structure, which then
(by an ∞-categorical version of Day convolution) leads to a symmetric monoidal
structure on MackG(E). Of course, this will model classical constructions of the
smash product of G-spectra. We give a very brief exposition focusing on the case
C = FinG, and refer to [BGS20] for the whole story.

The first step is to observe that if C is a disjunctive ∞-category (see Defini-
tion 6.4) that admits a terminal object 1, the ∞-category Span(C) admits a sym-
metric monoidal structure given by the product in C (which makes 1 the tensor
unit), see [BGS20, Ex. 2.13, Prop. 2.14]. We will write c× d for this tensor prod-
uct, but remind the reader that by Proposition 6.6, this is not the categorical
product in Span(C) (which is given by the coproduct in C).

As a consequence of universality 6.5, the tensor product functor

−×− : Span(C)× Span(C)→ Span(C)

preserves direct sums in either variable.
In the above case, the functor

τ : Span(C) ∼−→ Span(C)op

of Remark 6.3 provides a functorial self-duality for every object c in Span(C): There
is an evaluation morphism c× τc→ 1 given by the diagram

c

c× c 1

∆

and, dually, a coevaluation morphism 1→ τc× c given by τ of the evaluation, i.e.
the diagram

c

1 c× c.

∆
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These are easily confirmed (see [BGS20, 2.18]) to exhibit τc as a dual of c (with the
standard 1-categorical definition, applied to the homotopy category of Span(C)).
In particular, we have an adjunction-equivalence of mapping spaces

MapSpan(C)(τc× d, e) ≃ MapSpan(C)(d, c× e)

natural in c.
In [Gla16], Saul Glasman developed a general theory of Day convolutions for

∞-categories: He constructs a symmetric monoidal structure on Fun(K, C) given
that K and C are symmetric monoidal ∞-categories with C admitting all colimits
and the functors c ⊗ − : C → C preserving these, generalizing Lurie’s construction
for C = S, see [Lur17, Rem. 4.8.1.13].

Just as 1-categorically, on objects, this convolution product of F,G ∈ Fun(K, C)
is given as the dashed left Kan extension in the diagram

K ×K C × C C.

K

−⊗−

F×G −⊗−

Remark 8.12. As summarized in [BGS20, before Prop. 1.6], it is the unique sym-
metric monoidal structure on Fun(K, C) that preserves colimits in either variable,
and such that the functor

Kop × C → Fun(K,S)× C → Fun(K, C)
admits a symmetric monoidal structure, where the first functor is the Yoneda em-
bedding, and the second functor is

(F, c) 7→
[
k 7→ F (k)⊗ c ≃ colim

F (k)
c
]
.

In particular, in the case C = S, the Yoneda embedding itself is a symmetric
monoidal functor.

For E presentably symmetric monoidal and preadditive, we thus obtain a sym-
metric monoidal structure on Fun(SpanopG , E) given by Day-convolution. Unfor-

tunately, it is not quite true that MackG(E) = Fun×(SpanopG , E) is a symmet-
ric monoidal subcategory, but using the general principles established in [Lur17,
Sect. 2.2.1], one confirms [BGS20, Lemma 3.7] that there is a symmetric monoidal
structure on MackG(E) given by Day convolution followed by ’Mackeyfication’ i.e.
the left adjoint to the inclusion

Fun×(SpanopG , E) ↪→ Fun(SpanopG , E).
Certainly, this symmetric monoidal structure on MackG(E) preserves colimits in

either variable, and indeed it makes MackG(Sp) a presentably symmetric monoidal
∞-category, i.e. a commutative algebra-object of PrL with respect to the Lurie
tensor product [CMNN20, Constr. 2.7]. The analysis carried out in [BGS20, Ch. 4]
shows that in the case E = Sp, the natural refinement of the Yoneda embedding

SG : SpanG → MackG(Sp)

admits a canonical symmetric monoidal structure, which together with colimit-
preservation uniquely characterizes the tensor product on MackG(Sp).

Thus, we immediately see that SG[G/G] is the tensor unit of MackG(Sp) (since it
is so in SpanG), and more generally that for T ∈ SpanG, the Mackey functor SG[T ]
is a dualizable object of MackG(Sp), with dual SG[τT ]. Note that the object SG[τT ]
is of course the same as SG[T ], but this way we may write the natural equivalence
of functors SpanG → Sp

mapG(SG[τT ]⊗M,N ) ≃ mapG(M,SG[T ]⊗N ).
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Since MackG(Sp) is presentably symmetric monoidal, it has internal mapping ob-
jects characterized by adjunctions

(8.13) MackG(Sp) MackG(Sp).
−⊗M

F (M,−)

For orbits SG[T ], we have described this right adjoint above. In general, we also
have the following:

Corollary 8.14. For anyM,N in MackG(Sp), we have

F (M,N )(G/G) ≃ mapG(M,N ).

This should recover the intuition that the fixed points of the mappingG-spectrum
model the spectrum of equivariant maps.

Proof. We have

F (M,N )(G/G) ≃ mapG(SG, F (M,N ))

≃ mapG(M,N ).

where the first equivalence is an application of Proposition 8.8, and the second uses
the adjunction 8.13 and the fact that SG is the tensor unit of MackG(Sp). □

Remark 8.15. We have arrived at an alternative description for the underlying
OrG-spectrum u⃗M : OrG → Sp for a given spectral Mackey functorM. With the
definitions of 7.3, and the fact that −∗ = τ ◦−∗ as functors FinG → OropG , we have

u⃗M(−) ≃ mapG(SG[τ−],M)

≃ F (SG[τ−],M)(G/G)

≃ (SG[−]⊗M)(G/G).

Similarly, the underlying OropG -spectrum ⃗uM : SpanopG → Sp is given by

⃗uM(−) ≃ F (SG[−],M)(G/G).

Before we move on, we have one more structural property regarding the dualiz-
able objects of MackG(Sp) to prove.

Proposition 8.16. MackG(Sp) is rigidly-compactly generated, that is it has a set
of compact generators, and the class of compact object coincides with that of the
dualizable objects.

Proof. In light of Proposition 8.10, the thing left to check is that compactness
and dualizability coincide. Assume M is a dualizable object with dual M∨ and
colimF Ni some filtered colimit in MackG(Sp). Then we have the following equiva-
lences of mapping spectra

mapG(M, colim
F
Ni) ≃ F (M, colim

F
Ni)(G/G)

≃ (M∨ ⊗ colim
F
Ni)(G/G)

≃ colim
F

(M∨ ⊗Ni)(G/G)

≃ colim
F

mapG(M,Ni),

so applying the filtered-colimit preserving functor Ω∞ : Sp → S gives the equiva-
lence characterizing compactness ofM.

The other direction is a little more involved. Writing from here on out Md for
the full subcategory spanned by the dualizable objects of MackG(Sp), let us first
note some closure properties of Md.

Lemma 8.17. (1) Md is stable.
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(2) Any retract of a dualizable object is dualizable.
(3) Md is closed under finite colimits.

Proof. In a presentably symmetric monoidal stable∞-category, if some x is dualiz-
able with dual x∨, then so is Ωx with dual object Σ(x∨) (and vice-versa), exhibited
as such by the coevaluation map

1→ x∨ ⊗ x ≃ ΣΩ(x∨ ⊗ x) ≃ Σ(x∨)⊗ Ωx.

This says that Md is a stable subcategory.
To see closure under retracts, first note that since the definition of a dualizable

object is that of a dualizable object in the homotopy-category, we import the char-
acterization (of a dualizable object in a closed symmetric monoidal 1-category with
internal function objects F (x, y)) that x is dualizable if and only if, for all y, the
natural map

(8.18) F (x, 1)⊗ y → F (x, y)

is an equivalence. Since internal function objects of a presentably symmetric
monoidal ∞-category are (contravariantly) functorial (see Appendix B.2), given
a retract x of some dualizable X, the map 8.18 classifying dualizability of x is a
retract of the corresponding map for X, i.e. we have a commutative square

F (x, 1)⊗ y F (x, y)

F (X, 1)⊗ y F (X, y).∼

The upper horizontal map is then an equivalence and thus Md is closed under
formation of retracts in MackG(Sp).

We argue similarly for closure under finite colimits: In the stable (thus preaddi-
tive) setting, the functor F (−, z) commutes with coproducts (see again Appendix
B.2) and so does − ⊗ y, so the characterizing map 8.18 of a finite coproduct of
dualizables is a finite coproduct of equivalences. Similarly, a pushout square is
transformed into a pullback square, and since by stability −⊗y commutes with the
formation of pullbacks, so the characterizing map 8.18 of a pushout of dualizables
is a pullback of equivalences. We have seen that the dualizables are closed under
finite coproducts and pushouts, and thus all finite colimits. □

To proceed, we quickly recall some notions from [Lur09, Ch. 5]: The Ind-
construction of [Lur09, Sect. 5.3.5] associates to an ∞-category C an ∞-category
Ind(C) admitting all filtered colimits, with a fully faithful functor j : C ↪→ Ind(C)
such that the functor

FunF (Ind(C),D) ∼−→ Fun(C,D)
is an equivalence, where FunF (−,−) denotes filtered-colimit preserving functors
and D is some ∞-category admitting filtered colimits [Lur09, 5.3.5.10].

The functor C ↪→ Ind(C) preserves those finite colimits that exist in C by [Lur09,
Prop. 5.3.5.14], and we argue that if C → D preserves finite colimits, so does the
induced functor Ind(C)→ D. Indeed, we have a commutative diagram

Ind(C) Ind(D)

C D

j j

where three of the solid functors preserve finite colimits by assumption or the above.
That the top horizontal functor also preserves finite colimits (even all colimits) then
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is a consequence of [Lur09, Prop. 5.3.5.13], and the conclusion that the dashed
functor preserves finite colimits is immediate.

Above we proved that Md ↪→ MackG(Sp) preserves finite colimits, so the dashed
filtered-colimit preserving functor

Ind(Md)

Md MackG(Sp)

Fj

also preserves finite colimits, and thus all colimits. We further claim it is an equiv-
alence:

Since Md is stable, so is Ind(Md) by [Lur17, Prop. 1.1.3.6]. Then the essential
image of F is stable, closed under all colimits and contains the set of generators
{SG[G/H]}, so is all of MackG(Sp).

To see that its fully-faithful, first we see that for any d ∈Md, the functors

Ind(Md)→ S, MapInd(Md)(jd,−) and MapMackG(Sp)(Fjd, F−)

preserve filtered colimits (since d is compact in MackG(Sp) and jd is compact in
Ind(Md) by [Lur09, 5.3.5.5]). Thus the map

MapInd(Md)(jd, x)→ MapMackG(Sp)(Fjd, Fx)

is an equivalence if it is one for x ∈ imMd, where it is clear. Now the functors

Ind(Md)→ Sop, MapInd(Md)(−, x) and MapMackG(Sp)(F−, Fx)

always preserve filtered colimits, so the map induced by F is an equivalence if it is
so on the restriction to Md, and that we have just proved. Thus F is fully faithful.

We have shown F : Ind(Md) → MackG(Sp) is an equivalence, which we may
then restrict to an equivalence of the full subcategories of compact objects.

Now recall that the functor C → Ind(C) always factors through the full subcat-
egory of compact objects Ind(C)ω by [Lur09, 5.3.5.5], and this exhibits Ind(C)ω as
the idempotent-completion of C by [Lur09, Lemma 5.4.2.4].

An ∞-category is idempotent-complete if every idempotent corresponds to a re-
traction [Lur09, Sect. 4.4.5]. Since MackG(Sp) admits all colimits, it is idempotent-
complete ([Lur09, Rem. 5.3.1.10]). Therefore Md is also idempotent-complete as it
is closed under retractions, so the natural functor Md → Ind(Md)ω is an equiva-
lence. We summarize in this diagram:

Ind(Md) MackG(Sp)

Ind(Md)ω MackG(Sp)
ω

Md

∼

∼

∼

We have shown the inclusion of the dualizable into the compact objects of MackG(Sp)
to be an equivalence.

□

8.2. Pointed suspension, geometric fixed points and restriction. To pre-
pare for the proof that MackG(Sp) ≃ SpG, we will need a couple more constructions
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present on MackG(Sp). These model the familiar functors for genuine G-spectra

Σ∞ : SG• → SpG,

resH : SpG → SpH ,

ΦG : SpG → Sp.

This material is explained in [BH21] and [CMNN20], and we follow their exposition
quite closely.

We would like all these constructions to be symmetric monoidal left adjoints,
so we recall the formal setup from [BH21, Sect. 2.1], which gives an alternative
description of the symmetric monoidal structure on MackG.

Given C admitting finite products (considered as a cartesian symmetric monoidal
∞-category), we write C• for the ∞-category of pointed objects, which admits a
canonical symmetric monoidal structure such that the left adjoint (−)+ : C → C•
promotes to a symmetric monoidal functor. We then write C+ for the full subcat-
egory of C• spanned by the image of (−)+, which is, by construction, a symmetric
monoidal subcategory. For C symmetric monoidal, the sifted cocompletion PΣ(C) is
a presentably symmetric monoidal ∞-category, given that C admits finite coprod-
ucts which distribute over the tensor product in C. Here PΣ(C) is equipped with
the Day-convolution structure, i.e. the presentably symmetric monoidal structure
classified by the property that the Yoneda embedding is symmetric monoidal. In
this situation, we have a symmetric monoidal equivalence

PΣ(C+) ≃ PΣ(C)•
by [BH21, Lem. 2.2]. We are of course interested in the case C = FinG, to arrive at
a symmetric monoidal equivalence

SG• ≃ PΣ(FinG+).

Now consider the functor ι : FinG+ → Span(FinG) which sends T+ to T and a
morphism f : T+ → S+ to the span

{t ∈ T |f(t) ̸= •}

T S.

As laid out in [BH21, p. 50] and our Lemma 8.2, applying PΣ(−) to ι yields a
symmetric monoidal left adjoint

SG• → PΣ(SpanG).

Postcomposing with the (symmetric monoidal, left adjoint) stabilization functor

PΣ(SpanG)→ PΣ(SpanG)⊗ Sp

finally yields the symmetric monoidal left adjoint

ΣM
G : SG• → MackG(Sp).

Its right adjoint is given by

Fun⊕(SpanopG ,Sp)→ Fun×(SpanopG ,S•)→ Fun×(Finop
G ,S•) ≃ SG•

so we have a factorization of SG into symmetric monoidal left adjoints:

SG MackG(Sp).

SG•

SG

(−)+ ΣM
G
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We turn to the construction of a model for the geometric fixed points functor.
Consider the functor (−)G : FinG → Fin. It commutes with pullbacks, so we have
a functor Span(FinG)→ Span(Fin), which preserves finite coproducts so induces a
left adjoint on sifted cocompletions PΣ(Span(FinG)) → PΣ(Span(Fin)), see again
Lemma 8.2. Since the original functor (−)G : FinG → Fin preserves products, the
induced functor on spans is symmetric monoidal, and so is

PΣ(Span(FinG))→ PΣ(Span(Fin)).

We tensor this functor with Sp to obtain the symmetric monoidal left adjoint

PΣ(Span(FinG))⊗ Sp→ PΣ(Span(Fin))⊗ Sp.

Recall from e.g. [BH21, Prop. C.1] (or originally [Cra10, Sect. 5]) that

PΣ(Span(Fin)) ≃ CMon,

and thus (by Proposition 5.11) we have a canonical (symmetric monoidal) equiva-
lence

PΣ(Span(Fin))⊗ Sp
∼−→ Sp,

so we finally obtain the desired functor

ΦG
M : MackG(Sp)→ Sp.

In addition to being a symmetric monoidal left adjoint, it by construction sits in
the commutative diagram of symmetric monoidal left adjoints

SG• ≃ PΣ(FinG+) PΣ(SpanG) PΣ(SpanG)⊗ Sp = MackG(Sp)

S• = PΣ(Fin+) PΣ(Span(Fin)) PΣ(Span(Fin))⊗ Sp ≃ Sp.

(−)G

ΣM
G

ΦG
M

Σ∞

Thus, this functor satisfies the three properties that usually classify the geometric
fixed points functor on genuine G-spectra: It commutes with colimits, is symmetric
monoidal, and computes the expected values on suspension G-spectra, namely

ΦG
M (ΣM

G X) ≃ Σ∞XG

for any pointed G-space X.

Example 8.19. This immediately determines the values of ΦG
MSG[G/H] as Σ∞∗ ≃

0 if H is a proper subgroup of G and Σ∞S0 ≃ S if H = G.

Via the same procedure, we now produce symmetric monoidal left adjoint change-
of-group functors

resH : MackG(Sp)→ MackH(Sp)

associated to a subgroup H of G. This time, consider the forgetful functor resH
from finite G-sets to finite H-sets. It preserves pullbacks and finite coproducts and
thus defines a symmetric monoidal left adjoint

PΣ(Span(FinG))→ PΣ(Span(FinH)),

and we again obtain the symmetric monoidal left adjoint

resH : MackG(Sp)→ MackH(Sp)
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by tensoring with Sp. By displaying the analogous diagram as above, we see that
it commutes with suspension in the sense that there is a natural equivalence of
functors SG• → MackH(Sp)

(8.20) resH ◦ΣM
G ≃ ΣM

H ◦ resH .

By naturality, we also have the expected compatibility of further restriction, i.e.
for K ↪→ H ↪→ G the diagram

MackG(Sp) MackH(Sp)

MackK(Sp)

resH

resK
resK

commutes.
For a G-space X and subgroups K ↪→ H ↪→ G, we have (resH X)K = XK . We

would like restriction of Mackey functors to act in the same way on fixed points,
namely that

(resHM)(H/K) ≃M(G/K).

In clarifying this, we also recover the ’Wirthmüller Isomorphism’ from classical
equivariant stable homotopy theory.

First note that the forgetful functor resH : FinH → FinG has a left adjoint

indH : FinG → FinH , U 7→ G×H U.

Both resH and indH preserve pullbacks, so induce functors

Span(FinG) Span(FinH).
resH

indH

which are not only adjoint in the original direction, but as a consequence of the
self-duality of Span(C) also adjoint in the other direction [BH21, Cor. C.21]. We
will refer to a pair of functors which are simultaneously each others left and right
adjoint as a bi-adjunction.

Now recall from Lemma 8.2 that the right adjoint to PΣ(resH) is given by pre-
composition with resH : SpanopG → SpanopH as expressed in the diagram

(8.21)

PΣ(SpanG) PΣ(SpanH)

Fun×(SpanopG ,S) Fun×(SpanopH ,S).

=

PΣ(resH)

=

res∗H

But of course it is a general principle that precomposition along a left adjoint is
right adjoint to precomposition with its right adjoint, and vice-versa. Maybe more
clearly: If

C D
L

R

is an adjunction of ∞-categories (with unit transformation µ : c → RLc) and E is
a third ∞-category, we have an adjunction

Fun(C, E) Fun(D, E)
R∗

L∗

witnessed as such by the unit transformation

(α : C → E)→ L∗R∗α

given at c as α(c)
α(µ)−−−→ α(RLc) = L∗R∗α(c).
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Now if both L and R preserve products, the adjunction above restricts to an
adjunction

Fun×(C, E) Fun×(D, E).
R∗

L∗

Applying this principle to the bi-adjunction

Span(FinG) Span(FinH).
resH

indH

identifies the left adjoint PΣ(resH) in the square 8.21 as given by precomposition
with indH : SpanH → SpanG, and the other way around. Tensoring with Sp then
gives the bi-adjunction8

MackG(Sp) MackH(Sp).
resH

indH

where for an H-Mackey functor N we have

(indH N )(G/K) ≃ N (resH G/K)

and more importantly, for a G-Mackey functorM we have

(resHM)(H/K) ≃M(G×H H/K) =M(G/K).

Applying the principle resH XK = XK to geometric fixed points leads to the
following definition.

Definition 8.22. For H a subgroup of G, define the symmetric monoidal left
adjoints

ΦH
M : MackG(Sp)

resH−−−→ MackH(Sp)
ΦH

M−−→ Sp.

The next order of business will be to see that the family of functors {ΦH
M}H≤G

is jointly conservative, i.e. thatM ∈ MackG(Sp) is 0 if and only if ΦH
MM ≃ 0 for

all H.

8.3. Joint conservativity of {ΦH}. To prove that the family of symmetric monoidal
left adjoints {ΦH

M}H≤G is jointly conservative, we will need an explicit formula for
ΦG

MM. Again, this pretty closely follows Appendix A of [CMNN20].
We begin by constructing the classifying space EF of a family of subgroups of G.

Recall that a collection of subgroups F is called a family if its closed under taking
subgroups and conjugation. Its classifying space EF is then characterized by the
property that

EFH =

{
∗ if H ∈ F
∅ if H ̸∈ F .

Since SG = Fun(OropG ,S) and there is a map G/H → G/K in OrG if and only if H
is subconjugate to K, it should be obvious that EF exists (and uniquely so) if F
is indeed a family. We also have the following description, where we write OrFG for
the full subcategory of OrG spanned by the orbits G/H with H ∈ F .

Proposition 8.23. EF is given as the colimit of the natural inclusion OrFG ↪→ SG.

Proof. Since evaluation commutes with taking colimits, we need to see that the
colimit (in S) of

OrFG → S, G/H 7→ (G/H)K = MapOrG
(G/K,G/H)

8The fact that these functors are adjoined both ways is classically called the ’Wirthmüller
Isomorphism’.
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is contractible for K ∈ F and empty otherwise. The latter is clear: A space
MapOrG

(G/K,G/H) being non-empty implies K being subconjugate to H, so K
would have to be in F . Thus we are computing a colimit with constant value the
initial object ∅.

For K ∈ F , we are computing the colimit of the corepresentable functor

MapOrFG
(G/K,−) : OrFG → S

and colimits over corepresentable functors are always contractible: The colimit
is given by the geometric realization of the total space of an unstraightening by
[Lur21, Cor. 7.3.6.5]. A corepresentable functor unstraightens to the left fibration

Cc/ → C

and |Cc/| is contractible since c
=−→ c is an initial object. □

In this section, we will be particularly interested in the classifying space EP of
the family of proper subgroups P = {H < G}.

Definition 8.24. We define ẼP to be the cofiber (in SG•) of the map

EP+ → S0

that sends only the basepoint to the basepoint. Its fixed points at H are thus the
cofiber (in S•) of EPH

+ → S0, i.e.

ẼP
H
≃

{
∗ if H ∈ P
S0 if H = G.

Proposition 8.25. [CMNN20, Prop. A.8] We have an equivalence

(ΣM
G ẼP ⊗M)(G/G)

∼−→ ΦG
MM.

natural inM.

Proof. Under the Day-convolution symmetric monoidal structure on Fun(MackG(Sp),Sp),
lax symmetric monoidal functors MackG(Sp) → Sp correspond to algebra-objects
([Gla16, Prop. 2.12]), and the Sp-valued functor corepresented by the unit

M 7→ mapG(SG,M) ≃M(G/G)

becomes the unit of the symmetric monoidal structure on Fun(MackG(Sp),Sp), as
a consequence of the characterization of Remark 8.12. Thus, since ΦG

M is symmetric
monoidal, there is a lax symmetric monoidal transformation

M(G/G)→ ΦG
MM.

Since ΦG
M (ΣM

G ẼP⊗M) ≃ (Σ∞ẼP
G
)⊗ΦG

MM≃ ΦG
MM, replacingM by ΣM

G ẼP⊗M
gives the desired transformation

ϕ : (ΣM
G ẼP ⊗M)(G/G)→ ΦG

MM.

Since both sides preserve colimits, by Remark 8.11 it is enough to check that is an
equivalence on all orbitsM = ΣM

G (G/H+).
We know the right hand side to be

ΦG
MΣM

G (G/H+) ≃

{
0 if H ∈ P
S if H = G.

Since every map 0 → 0 is an equivalence and every algebra-map S → S is an
equivalence, we are reduced to confirming that we have the same values on the left
hand side. Since by Remark 8.15 we have

(ΣM
G ẼP ⊗ ΣM

G (G/H+))(G/G) ≃ (ΣM
G ẼP)(G/H),



49

it remains to see that

(ΣM
G ẼP)(G/H) ≃

{
0 if H ∈ P
S if H = G.

The first bit is easy enough:

(ΣM
G ẼP)(G/H) ≃ (resH ΣM

G ẼP)(H/H)

≃ ΣM
H (resH ẼP)(H/H)

≃ 0,

since resH ẼP is contractible in SG• for H ∈ P. The second statement is a little
more involved.

Lemma 8.26. [CMNN20, Lemma A.3] We have an equivalence

ΣM
G ẼP(G/G) ≃ S.

Proof. Since SG and evaluation at G/G preserve cofiber sequences and colimits,

ΣM
G ẼP(G/G) is the cofiber of the evaluation at G/G of the map of Mackey functors

colim
G/H∈OrPG

(SG[G/H])→ SG[G/G]

induced by G/H → G/G. Let us take as input that there is a cofiber sequence of
commutative monoids

colim
G/H∈OrPG

(FinG/G/H)∼ → Fin∼
G → Fin∼

where the first map is induced from FinG/G/H → FinG/G/G ≃ FinG. This is a

consequence of [CMNN20, Lemma A.4]. Recalling from Example 8.6 that the fixed
points of orbits in MackG(Sp) are given by

SG[G/H](G/G) ≃ mapG(SG,SG[G/H]) ≃ (FinG/G/H)∼,gp,

we apply the left adjoints (between pointed∞-categories, and thus cofiber preserv-
ing)

CMon
(−)gp−−−−→ CMongp ≃ Sp≥0 ↪→ Sp,

and obtain the desired cofiber sequence of spectra

colim
G/H∈OrPG

SG[G/H](G/G)→ SG(G/G)→ S.

□

This also concludes the proof of Proposition 8.25, i.e. that

ΦG
MM≃ (ΣM

G ẼP ⊗M)(G/G).

□

Remark 8.27. Since the functors ΣM
G , −⊗M and evaluating at G/G all preserve

cofiber sequences, we have a cofiber sequence

(ΣM
G colim

OrPG

(G/H+))⊗M)(G/G)→M(G/G)→ (ΣM
G ẼP ⊗M)(G/G).

Commuting the colimit to the outside and by Proposition 8.25, we equivalently
obtain the cofiber sequence

(8.28) colim
G/H∈OrPG

M(G/H)→M(G/G)→ ΦG
MM.

This is the ’isotropy separation sequence’, expressing the categorical G-fixed points
as a twisted sum of the fixed points with respect to proper subgroups and geometric
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fixed points. It also directly implies that if all fixed points with respect to proper
subgroups vanish, the ’genuine’ and the geometric fixed points with respect to G
agree.

That the collection of geometric fixed points functors {ΦH
M} is jointly conserva-

tive is now an easy consequence, and then so is the fact that the representation
spheres are invertible objects of MackG(Sp).

Proposition 8.29. The collection of geometric fixed points functors {ΦH
M} is jointly

conservative, i.e. M∈ MackG(Sp) is 0 if and only if ΦH
M (M) ≃ 0 for all subgroups

H.

Proof. For G = 1 the geometric fixed points functor is defined as the equivalence

Mack1(Sp) = PΣ(Span(Fin))⊗ Sp ≃ Sp,

so the result holds.
We now argue by induction on the order of the finite group G: By hypothesis,

the vanishing of the geometric fixed points implies that resHM≃ 0 for all proper
subgroups H. Thus, sinceM is 0 if and only if all its evaluations are 0 ∈ Sp and
M(G/H) ≃ resHM(H/H), it only remains to see thatM(G/G) ≃ 0.

But now both the left hand term and the right hand term in the isotropy sepa-
ration sequence 8.28

colim
G/H∈OrPG

M(G/H)→M(G/G)→ ΦG
MM

vanish, so the result follows. □

Recall that for a given finite-dimensional real representation V of the group G
(i.e. a homomorphism G → Aut(V ) for some finite dimensional vector space V ),
the pointed G-space SV is the one-point compactification of the G-space V . We
call these spaces representation spheres. They are always finite colimits of orbits
(G/H)+ ∈ SG•. An object x of a symmetric monoidal ∞-category is invertible if
there is an object x−1 such that x⊗ x−1 is the tensor unit.

Corollary 8.30. [CMNN20, Prop. A.10] The symmetric monoidal left adjoint
ΣM

G : SG• → MackG(Sp) sends all representation spheres to invertible objects.

Proof. We have seen that the orbits ΣM
G (G/H+) are dualizable and, in the proof of

Proposition 8.16, that the dualizable objects in MackG(Sp) are closed under finite
colimits. Thus any representation sphere ΣM

G SV is dualizable. Call its dual S−V

and consider the coevaluation map

SG → S−V ⊗ ΣM
G SV .

Applying the symmetric monoidal functor ΦH
M sends this to the coevaluation map

in Sp

S→ D ⊗ ΦH
MΣM

G SV

where D is the dual of ΦH
MΣM

G SV . We have

ΦH
MΣM

G SV ≃ Σ∞(SV )H ≃ Σ∞S(V H)

which is a sphere of dimension dimV H and thus invertible in Sp. Therefore, the
coevaluation map in Sp is an equivalence, and by joint conservativity of the functors
ΦH

M , so is the coevaluation map in MackG(Sp). □
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9. Mackey Functors and G-spectra

We can now prove Theorem 1.3, i.e. that there is an equivalence of symmetric
monoidal ∞-categories

SpG ≃ MackG(Sp).

Before giving the proof found in [CMNN20, Appendix A], with only minor changes
and some clarifications, let us recap the history of this result.

In the before-times, there were symmetric monoidal model categories of gen-
uine G-spectra: Orthogonal G-spectra and SG-modules are prominent examples,
which are both described in [MM02]. Using the model-theoretic version of the
Schwede-Shipley theorem of [SS03] (which describes stable model categories with a
set of compact generators as spectrally-enriched presheaves on the full subcategory
of those compact generators) Guillou and May managed to establish a zig-zag of
Quillen equivalences between orthogonal G-spectra and a certain model category
of spectrally-enriched functors BG → S . The target here is the model category
of symmetric spectra, enriched over itself, and the source is a somewhat ad-hoc
definition of the spectral Burnside-category: It is obtained by first considering the
2-category Span(FinG) and its mapping categories as symmetric monoidal under
the coproduct. Applying some monoidal model for K-theory (in lieu of a group-
completion functor) yields a spectrally-enriched category, and it is then essentially
an equivariant version of the Barrat-Priddy-Quillen theorem that identifies BG

with the full subcategory spanned by the (suspension G-spectra of) orbits. The
triple of papers [GM17a], [GM17b], [GM20] is testament to their hardships.

But the idea was clear: The equivariant stable homotopy category is equivalent to
spectral presheaves on the full subcategory spanned by the orbits, and the (connec-
tive) spectrum of equivariant maps Σ∞

G (G/H+) → Σ∞
G (G/K+) is the group com-

pletion of the commutative monoid HomSpanG
(G/H,G/K). Barwick transported

(and greatly generalized) these ideas then to the language of ∞-categories [Bar17].
Since group-completion is left adjoint to the inclusion and the ∞-category Sp is
already additive, there is no more need to group-complete the mapping spaces of
Span(FinG), and we arrive at the definition

MackG(Sp) := Fun⊕(Span(FinG)
op,Sp).

A direct proof that the∞-category associated to orthogonal G-spectra is equivalent
to the ∞-category of spectral G-Mackey functors then appears in [Nar16], using
the heavy machinery of parametrized higher category theory.

Robalo’s thesis [Rob15] establishes the technical background to characterize,
given a presentably symmetric monoidal ∞-category C and an object c in C, the
initial (presentably symmetric monoidal) ∞-category under C such that c is sent
to an invertible object. In [GM20, App. C], Gepner and Meier then provide a
careful proof that the ∞-category associated to orthogonal G-spectra is indeed the
initial object of CAlg(PrL) under SG• with inverted representation spheres, and in
Section 2.5 we took this uinversal property as our definition of SpG.

As summarized in [CMNN20, Thm A.2], the essential insight to show that (the
∞-category associated to) orthogonal G-spectra satisfies said universal property is
that, by [Rob15, Prop. 2.19, Cor. 2.22], the mapping spaces between (the image of)
finite G-sets T+, T

′
+ in SpG are given by

colim
V ∈U

MapSG•
(SV ⊗ T+, S

V ⊗ T ′
+),

as they are in orthogonal G-spectra.
In the appendix of [CMNN20], it is shown that MackG(Sp) satisfies the same uni-

versal property as SpG, and it is this proof that we give here. From this perspective,
the equivariant Barrat-Priddy-Quillen is a corollary of two constructions satisfying
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the same universal property [CMNN20, Cor. A.11], where in the Guillou-May ver-
sion it is the essential ingredient of the proof. We also remark that we import
some structural properties of SpG from orthogonal G-spectra, but believe that the
relevant properties can be deduced, without too much trouble, from the universal
property (and Robalo’s description) of SpG, giving a proof without recourse to any
model.

9.1. The proof that SpG ≃ MackG(Sp). Recall from Section 2.5 that we defined
SpG as the initial presentably symmetric monoidal ∞-category equipped with a
symmetric monoidal functor Σ∞

G : SG• → SpG such that the representation spheres
are send to invertible objects. Since ΣM

G : SG• → MackG(Sp) inverts the representa-
tion spheres by Corollary 8.30, we obtain an essentially unique symmetric monoidal
left adjoint

SG•

SpG MackG(Sp).

Σ∞
G

ΣM
G

L

rendering the diagram commutative.

Proposition 9.1. [CMNN20, Thm. A.1] The above functor L : SpG → MackG(Sp)
is an equivalence.

Let us be very explicit about what well-known facts about the ∞-category SpG

we will use. In light of the identification in the appendix of [GM20], these will be
derived from analysis of one of the equivalent models for SpG such as orthogonal
G-spectra [HHR15] or SG-modules [MM02], and match the structural results we
proved for MackG(Sp) in the preceding sections.

• There are symmetric monoidal left adjoints resH : SpG → SpH [MNN17,
after Rem. 5.12].

• There is a symmetric monoidal geometric fixed points functor [NS18, Def.
II.2.5.(ii)] ΦG : SpG → Sp given by the formula [Sch15, Prop. 7.6]

ΦGX ≃ (Σ∞
G ẼP ⊗X)G.

Setting

ΦH : SpG
resH−−−→ SpH

ΦH

−−→ Sp

gives a jointly conservative family of functors {ΦH}H≤G. If X is such
that resH X vanishes for all proper subgroups H, there is an equivalence
XG ∼−→ ΦGX. These last two facts follow from the isotropy separation
sequence in the same way we derived them for Mackey functors.

• SpG is rigidly-compactly generated, i.e. there is a set of compact genera-
tors, and the dualizable and the compact objects agree. Given that the
orbits Σ∞

G (G/H+) ∈ SpG are compact generators ([GM20, Lemma C.2] and
[MNN17, Ex. 5.11]) and dualizable [GM17a, Prop. 3.9], the proof of our
Proposition 8.16 adapts word for word.

Proof. We first collect some preliminaries about R : MackG(Sp) → SpG, the right
adjoint to L.

(i) The functor R, like L, also preserves all colimits: L is symmetric monoidal so
preserves dualizable objects, which coincide with compact objects on either
side. We give the easy proof that the right adjoint of a compact-preserving
functor between presentable compactly generated stable ∞-categories pre-
serves all colimits in Lemma 11.6.
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(ii) We have the projection formula: The natural map

(9.2) X ⊗RM ∼−→ R(LX ⊗M)

is an equivalence, for any X ∈ SpG and anyM∈ MackG(Sp).
Indeed, by the above both sides are colimit-preserving functors of X, so

since SpG is rigidly-compactly generated, it is enough to check on dualizable
objects. But for dualizable X ∈ SpG with dual X∨, we compare mapping
properties:

MapSpG
(Y,X ⊗RM) ≃ MapSpG

(Y ⊗X∨, RM)

≃ MapMackG
(LY ⊗ LX∨,M)

≃ MapMackG
(LY,LX ⊗M)

≃ MapSpG
(Y,R(LX ⊗M)).

(iii) The functor R is conservative: If RM≃ 0, we have

0 ≃ MapSpG
(Σ∞

G (G/H+), RM)

≃ MapMackG
(LΣ∞

G (G/H+),M)

≃ MapMackG
(ΣM

G (G/H+),M)

≃M(G/H)

for all H ≤ G, soM is 0.

We have confirmed the hypotheses (i)-(iii) of Proposition 5.29 of [MNN17], and
may reap its reward: There is an equivalence

MackG(Sp) ≃ModSpG
(RSG),

given by equipping RM with its canonical RSG-module structure. Here both
the algebra-structure on RSG and the module-structure on RM are derived from
the fact that a right adjoint of a symmetric monoidal functor is lax symmetric
monoidal. Thus, we may conclude that R is an equivalence if the forgetful functor
ModSpG

(RSG)→ SpG is an equivalence, which is the case if the unit map

(9.3) u : 1SpG
→ RL(1SpG

) ≃ RSG

is an equivalence.
Certainly for the trivial group G = 1, we have Mack1(Sp) ≃ Sp1 ≃ Sp in the

desired fashion, and we may proceed by induction on the group order: We assume,
for all proper subgroups H, that

SpH
LH−−→ MackH(Sp)

is an equivalence. These sit in squares

SpG MackG(Sp)

SpH MackH(Sp)

resH

L

resH

LH

which commute since both compositions are symmetric monoidal left adjoint func-

tors SpG → MackH that agree after precomposing with SG•
Σ∞

G−−→ SpG. Now from
the induction hypothesis, it follows that the unit map 9.3 is an equivalence on
H-fixed points for H a proper subgroup, i.e. that

mapSpG
(G/H+, 1SpG

)
u∗−−→ mapSpG

(G/H+, RL1SpG
)
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is an equivalence: The above factorizes as

mapSpG
(G/H+, 1SpG

) mapSpG
(G/H+, RL1SpG

)

mapMackG
(L(G/H+), L1SpG

),

L

u∗

∼

and the left vertical again factorizes as

mapSpG
(G/H+, 1SpG

) mapMackG
(G/H+, L1SpG

)

mapSpH
(SH , resH 1SpG

) mapMackH
(SH , resH 1MackG

)

∼

L

∼

LH

∼

It remains to see that
(1SpG

)G → (RSG)G

is an equivalence, or (by the isotropy seperation sequence) equivalently that

ΦG1SpG
→ ΦGRSG

is. Since ΦG : SpG → Sp is symmetric monoidal, this is a map of algebras with
source equivalent to S, so it is enough to see that that there is some equivalence
ΦGR(SG) ≃ S.

For anyM∈ MackG(Sp), we have

(RM)G := mapSpG
(Σ∞

G (G/G+), RM)

≃ mapMackG
(SG,M) ≃M(G/G).

We also have the formula

ΦGX ≃ (Σ∞
G ẼP ⊗X)G

for geometric fixed points of genuine G-spectra, and with these we compute

ΦGR(SG) ≃ (Σ∞
G ẼP ⊗R(SG))G

≃ R(LΣ∞
G ẼP ⊗ SG)G

≃ R(ΣM
G ẼP)G

≃ ΣM
G ẼP(G/G)

≃ S
where the second equivalence uses the projection formula 9.2 and the last uses
Lemma 8.26. □

Remark 9.4. In the introduction, we introduced the underlying OrG-spectrum of
a genuine G-spectrum X as

G/H 7→ (G/H+ ⊗X)G.

Given that the equivalence SpG → MackG(Sp) is symmetric monoidal, compatible
with G-suspensions and sends G-fixed points to evaluation at G/G, and in light of
Remark 8.15, this is equivalent to the underlying OrG-spectrum of the associated
Mackey functor.

For the same reason, the underlying OropG -spectrum of a genuine G-spectrum X,
defined as

G/H 7→ mapSpG
(G/H+, X) ≃ F (G/H+, X)G,

agrees with the underlying OropG -spectrum of the associated Mackey functor.
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10. (Co-)Assembly and the norm

In this chapter, we explain why for any (genuine) G-spectrum, the assembly and
coassembly maps associated to their underlying OrG and OropG -spectrum compose
to the norm map of the underlying spectrum with G-action.

First some background on the norm map: Given an abelian group A equipped
with an action of a finite group G, there is a map

nm : AG → AG, [a] 7→
∑
g∈G

g · a

from the quotient group AG to the fixed points AG. This situation generalizes to
the ∞-categorical setting: For G a finite group and C a preadditive ∞-category
admitting colimits and limits indexed by finite groupoids, there is a natural norm
map

nm : XhG → XhG

associated to any X ∈ CBG. The general construction of this map is performed
in [Lur17, Setc. 6.1.6], and it is the content of [Lur17, Rem. 6.1.6.23] that the
constructed map indeed generalizes the classical situation. Its cofiber is called the
Tate construction.

However, we are not concerned with this generality, and refer to the much older
[GM95]: For a genuine G-spectrum X, its Tate cohomology spectrum is constructed
as the cofiber of the composition

(EG+ ⊗X)G XG ≃ F (SG, X)G

F (EG+, X)G.

➀

nm ➁

Here, as usual, EG denotes the unique G-space whose fixed points with respect to
any nontrivial subgroup are empty, but whose underlying space is contractible, i.e.
the classifying space of the trivial family {1}, i.e. by Proposition 8.23

EG ≃ colim(Or
{1}
G ↪→ SG).

That the two constructions of the map nm coincide appears to be another folk-
lore result. We prove this identification in Appendix A, as it uses the results of
Chapter 12. The following proposition together with Theorem 4.8 will easily imply
Theorem A and its dual Theorem A’.

Proposition 10.1.

(i) The map

(EG+ ⊗X)G
➀−−→ XG

is the Davis-Lück-assembly map 4.4 associated to u⃗M : OrG → Sp, whereM
is the spectral Mackey functor associated to X by Theorem 9.1.

(ii) The map

XG ➁−−→ F (EG+, X)G

is the Davis-Lück-coassembly map 4.11 associated to ⃗uM : OropG → Sp, where
M is the spectral Mackey functor associated to X by Theorem 9.1.

Proof. (i) Under the symmetric monoidal equivalence SpG → MackG(Sp), the map
➀ is sent to

(ΣM
G EG+ ⊗M)(G/G)→M(G/G).
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By colimit-preservation of the various functors involved and Proposition 8.23, this
is equivalent to

colim
G/H∈Or

{1}
G

(ΣM
G (G/H+)⊗M)(G/G)→M(G/G)

which is
colim

G/H∈Or
{1}
G

u⃗M→ u⃗M(G/G)

by Remark 8.15. But this is the comparison map of the left Kan extension from

Or
{1}
G to the terminal object by Example 3.6

(l(u⃗M|
Or

{1}
G

)→ u⃗M)(G/G),

i.e. the Davis-Lück-assembly map 4.4 associated to u⃗M.
(ii) Dually, the map ➁ is sent to

M(G/G)→ F (ΣM
G (EG+),M)(G/G).

Since the mapping G-Mackey functor transforms colimits into limits by Appen-
dix B.2 and again in light of Remark 8.15, this is equivalent to the natural map

⃗uM(G/G)→ lim
BG

⃗uM,

i.e. the Davis-Lück-coassembly map 4.11 associated to u⃗M. □

Combining the results of this chapter with Theorem 4.8 and Proposition 4.12,
this concludes the proof of Theorems A and A’.

Remark 10.2. The largely formal observation

(EG+ ⊗X)G ≃ uXhG

obtained from commuting various colimits and the fact

(SG[G/1]⊗X)G ≃ uX

is classically known as the Adams isomorphism.



57

11. The ∞-category of small stable idempotent complete
∞-categories

We follow [BGT13] in defining Catperf as the∞-category of small stable idempotent-
complete ∞-categories and exact functors. It enjoys many pleasant formal proper-
ties: It is presentable [BGT13, Cor. 4.25], and thus complete and cocomplete. It is
not only a full subcategory of Catex (the ∞-category of small stable ∞-categories)
but also a localization (i.e. the inclusion is right adjoint) by [BGT13, Lemma 2.20].
Combining this with [Lur17, Theorem 1.1.4.4] tells us that limits in Catperf are
computed underlying, i.e. as in Cat∞. Characterizing the formation of various
colimits in Catperf will occupy the rest of this chapter.

11.1. Preadditivity. The first colimits we want to consider are those over finite
sets, i.e. finite coproducts. It turns out that these identify with finite limits in
the canonical way, rendering the ∞-category Catperf preadditive. This will allow
us to use Catperf on the same footing as Sp as coefficients of Mackey functors in
Chapter 12.

Recall that an ∞-category is preadditive if it admits direct sums, that is, it has
a zero object 0 (i.e. an object that is both terminal and initial, necessarily unique
up to contractible choice), admits finite products and coproducts, and these are
identified by the natural map afforded by the zero object, i.e. the map

ϕ :
∐
I

ci →
∏
I

ci

given by the maps ϕij : ci −→ cj with ϕij = 0 for i ̸= j, and ϕii = Idci (the ’identity
matrix’).

The following largely formal proof is a retelling of Clark Barwick’s version in the
analogous setting of Waldhausen ∞-categories, see [Bar16, Prop. 4.11].

Proposition 11.1. The ∞-category Catperf is preadditive.

Proof. The category consisting of one point and no nontrivial morphisms is of
course small, stable, and idempotent-complete and thus provides a zero object of
Catperf . Let (Ci)i∈I be a finite collection of objects in Catperf . Limits and thus
products exist and are formed as in Cat∞, so we have to show that C :=

∏
I Ci is

also the coproduct, exhibited as such by the natural maps ϕi : Ci −→ C (which are
the identity on the i’th component and 0 on all others).

Recall that colimit-diagrams in any∞-category may be recognized by their prop-
erty to induce limit-diagrams on all mapping spaces, i.e. we need to show that, for
any D ∈ Catperf , the map

MapCatperf
(C,D) −→

∏
I

MapCatperf
(Ci,D)

induced by the ϕi is an equivalence of spaces. Just as the mapping space between
∞-categories C,D in Cat∞ is obtained from the ∞-category Fun(C,D) by taking
its maximal sub-groupoid, we may identify MapCatperf

(C,D) with the maximal sub-

groupoid in Funex(C,D), where the latter is the full subcategory of Fun(C,D) on
the exact functors.

Thus, we are reduced to recognizing the functor

F : Funex(C,D) −→
∏
I

Funex(Ci,D)

as an equivalence of ∞-categories.
We do this by explicitly constructing an inverse: First, let

u :
∏
I

Fun(Ci,D) −→ Fun(C,
∏
I
D)
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be adjoint to

C ×
∏
I

Fun(Ci,D) ≃
∏
I
(Ci × Fun(Ci,D)) −→

∏
I
D

where the last map is evaluation in each factor.
As any stable ∞-category admits finite sums, for any finite set I, there is a

functor Fun(I,D) colim−−−→ D, and thus (since
∏

I D ≃ Fun(I,D)) we have a functor

e : Fun(C,
∏
I
D) −→ Fun(C,D)

sending (fi)i∈I to

c 7→
∐
I

fi(c).

The composition e ◦ u restricts to a functor

G :
∏
I

Funex(Ci,D) −→ Funex(C,D)

by the observation that a finite sum of exact functors is again exact.
Now we check that G is indeed an inverse to F : If we write pi : C → Ci for the

i’th projection, the composition

F ◦G :
∏
I

Funex(Ci,D) −→
∏
I

Funex(Ci,D)

sends a tuple of exact functors (fi : Ci → D)i∈I to the tuple(∐
j∈I

fj ◦ pj ◦ ϕi

)
i∈I

which is equivalent to the original tuple (fi)i∈I via the equivalences pj ◦ ϕi ≃ IdCi

if j = i, pj ◦ ϕi ≃ 0 in all other cases, and X
∐

0 ≃ X which holds in any pointed
∞-category.

In the other direction, the composition

G ◦ F : Funex(C,D) −→ Funex(C,D)
sends f ∈ Funex(C,D) to the functor∐

I
f ◦ ϕi ◦ pi.

By exactness of f , we are finished if we see
∐

I ϕi◦pi to be the identity functor on C.
This is true since coproducts of (exact) functors are of course computed pointwise,
and again X

∐
0 ≃ X.

□

Remark 11.2. In this project, we care about functors Catperf → Sp that preserve
sums, and we simply call them additive functors. We remark that the notion of an
additive invariant from [BGT13] asks for more: By definition, an additive invariant
Catperf → Sp preserves filtered colimits (a condition we will not need), and also
preserves split-exact sequences. A sequence of functors

A → B → C
in Catperf is called exact if it is both a fiber sequence and cofiber sequence ([BGT13,
Ch. 5], compare also [LT19, Def. 1.2]), and it is called split-exact if it is exact and
the fully faithful functor A → B admits a right adjoint, and the functor B → C
admits a fully faithful right adjoint. We easily confirm that a sum decomposition

A → A⊕ C → C
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gives such a split-exact sequence, so indeed every additive invariant in the sense of
[BGT13] is an additive functor (but not vice-versa).

These include connective K-theory, non-connective K-theory and topological
Hochschild Homology, which are constructed as functors

K,K, THH : Catperf → Sp

and proven to be additive invariants in sections 7, 9.1, 10.1 of [BGT13] respectively.
Topological cyclic homology only fails to be an additive invariant because it does
not preserve filtered colimits (it is, however, a limit of the additive invariants TCn),
so it also gives an additive functor TC : Catperf → Sp, see [BGT13, Sec. 10.3].

11.2. Homotopy orbits. We now study the formation of homotopy orbits in
Catperf . Unlike finite coproducts, these will not coincide with the corresponding
limit, but we can still exploit a close relation to give a description. The reason for
our interest is contained in the following statement, whose proof will occupy the
rest of the section.

Theorem 11.3. Let R be an E1-ring, G a finite group. We equip PerfR, the
category of compact R-modules, with the trivial action. Then

PerfRhG := colim
BG

PerfR ≃ PerfR[G].

To calculate this colimit, we shall exploit the relation Catperf holds to the ∞-
category PrexL (of stable presentable ∞-categories and left adjoint functors) via
the functor of Ind-completion, to arrive at the following description of homotopy
orbits in Catperf : The homotopy orbits of any X ∈ Fun(BG,Catperf) are given by
the compact objects of the homotopy fixed points of Ind ◦X ∈ Fun(BG,PrexL ), and
these homotopy fixed points may be computed as a limit in the ambient∞-category

of large ∞-categories Ĉat∞, see [CMNN20, Ex. 2.17].
The crucial facts about Ind-completion are the following: The functor

Ind: Catperf → PrexL

(which freely adjoins filtered colimits to any small∞-category, see [BGT13, Sect. 2.4]
for a summary and [Lur09, Ch. 5.3] for a thorough discussion) factors as an equiv-
alence onto the subcategory Prex,ωL of compactly generated (stable, presentable)
∞-categories, and (left adjoint) functors that preserve compact objects. Its inverse
is given by the functor that assigns to a stable presentable ∞-category its sub-
category of compact objects, denoted (−)ω. We summarize this situation in this
diagram:

Catperf PrexL

Prex,ωL

Ind

∼ −ω

This is rephrasing the contents of [BGT13, Lemma 2.20] and the surrounding
paragraphs. We also collected some properties of the Ind-functor in the proof of
Proposition 8.16. We shall prove the following theorem.

Theorem 11.4. The inclusion Prex,ωL → PrexL preserves colimits. As a corollary of
the above, so does the functor Ind: Catperf → PrexL .

Remark 11.5. Our recipe to compute colimits in Catperf via comparison to PrexL is
already explained in [CMNN20, Constr. 2.16]. However, the stated reason for Ind
to commute with colimits is not quite correct - It is said that (−)ω is right adjoint
to Ind. Passage to compact objects only defines a functor on the subcategory of
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functors preserving compact objects (for obvious reasons). Even with Theorem 11.4
proved by other means, the adjoint functor theorem cannot provide a right adjoint
for Ind, since PrexL is not locally small: Concretely, consider the ∞-category of
compact spectra Spω ∈ Catperf (with Ind(Spω) ≃ Sp), and presume the existence
of an adjunction

Catperf PrexL .
Ind

R

We would obtain, for every stable presentable∞-category C an equivalence of map-
ping spaces

(RC)∼ ≃ Funex(Sp
ω, RC)∼

≃ MapCatperf
(Spω, RC)

≃ MapPrexL
(Sp, C)

≃ Funex(Sp, C)∼

≃ C∼

where the term on the far left is the core of a small ∞-category (and thus itself
small), and the term on the right is not small in general, e.g. for C = Sp. Note
how restricting to only those functors in PrexL that preserve compacts immediately
alleviates this contradiction.

While certainly known to experts, to the authors knowledge no proof of Ind
preserving colimits has been recorded in the literature. We first check some easy
preliminaries.

Lemma 11.6. Let

C D
F

G

be an adjunction of presentable ∞-categories, F being the left adjoint.

(i) If G preserves filtered colimits, F preserves compact objects.
(ii) If F preserves compact objects and C is compactly generated, G preserves

filtered colimits.
(iii) If C and D are stable, and G preserves filtered colimits, then G also admits a

right adjoint.

Proof. (i) For c a compact object of C and {di} any filtered diagram in D, we see
the natural equivalence

MapD(Fc, colim di) ≃ MapC(c,G colim di)

≃ MapC(c, colimGdi)

≃ colimMapD(c,Gdi)

≃ colimMapD(Fc, di)

by in turn applying the adjunction, G preserving filtered colimits, c being
compact, and the adjunction again.

(ii) Similarly, for c compact, {di} any filtered diagram and F compact-preserving,
we obtain

MapC(c,G colim di) ≃ MapC(c, colimGdi)

so the two colimit-preserving functors

MapC(−, G colim di),MapC(−, colimGdi) : Cop → S
agree on compacts, so they agree everywhere as C is assumed compactly gen-
erated.

The Yoneda lemma then supplies the natural equivalence

colimGdi ≃ G colim di.
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(iii) In the stable situation, G being right adjoint implies it preserves all pullback
squares and thus pushout squares, as well as all finite products and thus finite
coproducts. A functor preserving finite coproducts and pushouts preserves all
finite colimits, so if it in addition preserves filtered colimits, it preserves all
colimits.

The adjoint functor theorem then supplies its right adjoint.
□

For full subcategories of∞-categories, it is easy to see that the inclusion preserves
colimits if and only if the full subcategory is closed under the formation of colimits.
For non-full inclusions of subcategories (such as Prex,ωL → PrL), the following is the
relevant analogue.

Lemma 11.7. Let C0 → C be the inclusion of a subcategory, C cocomplete. It
preserves colimits if for any diagram

K C0 C,F0

F

any colimiting cocone F̄ : K▷ → C factors through C0, and in addition for any
cocone E : K▷ → C0 extending F0, the map F̄ (▷)→ E(▷) (induced by the universal
property of F̄ being a colimit in C) is already in C0.

Proof. The point here is that for a subcategory inclusion of ∞-categories C0 → C,
the induced map

MapC0
(c, d)→ MapC(c, d)

is an inclusion of components, for any two objects c, d ∈ C0. This lets us confirm
that the factorization of F̄ through C0 is a colimiting cocone in C0, so uniqueness
of colimits gives the result.

Indeed, we can directly compare the components hit by the horizontal arrows in

MapC0
(F̄ (▷), c) MapC(F̄ (▷), c)

MapFun(K,C0)(F0, c) MapFun(K,C)(F, c)

∼

to deduce the desired natural equivalence of the terms on the left. □

Now we are in shape to verify Theorem 11.4, by verifying the conditions of the
above lemma. Recall that PrexR is the∞-category of presentable stable∞-categories

and right adjoint functors, and we have a canonical equivalence (PrexL )op
∼−→ PrexR

which is the identity on objects and sends any functor to its right adjoint, see
[Lur09, Cor. 5.5.3.4].

Proof of 11.4. We consider a diagram

K Prex,ωL PrexL
A

and check the conditions of Lemma 11.7. By the above, we can always form the
diagram of right adjoints

Kop
⃗A−→ PrexR ,

and any limiting cone
◁
(Kop) → PrexR of ⃗A yields a colimiting cocone for A by

passing back to left adjoints.
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Limits in PrR (and thus in PrexR ) exist and are formed in the ambient (huge)

∞-category of large ∞-categories Ĉat∞, by [Lur09, 5.5.3.18]. In our situation of
a diagram of compactly generated categories and compact-preserving left adjoints,

all maps in the diagram of right adjoints ⃗A now preserve colimits by Lemma 11.6
(ii) and (iii), so it is simultaneously a diagram Kop → PrexL .

But limits in PrexL are also formed underlying by [Lur09, Cor. 5.5.3.13], so the

limit of ⃗A taken in PrexL and in PrexR agree, and thus all the natural projection maps
from the limit are simultaneously left and right adjoints! Thus by Lemma 11.6 (i),
their left adjoints preserve compacts, and these are exactly the natural maps to the
colimit in PrexL .

To factor the colimiting cocone formed in PrexL through Prex,ωL , it only remains
to see that A∞ := colimA is compactly generated. For this, consider Ac the full
subcategory of A∞ generated under filtered colimits by the essential images of the
compact objects in the {Ak}k∈K . These are all compact since we above observed
that the natural maps Ak → A∞ preserve compacts. We shall now prove that
Ac ↪→ A∞ is an equivalence, where the former is clearly compactly generated.

As the Ak are compactly generated, the maps Aω
k → Ac extend uniquely to

filtered-colimit-preserving functors Ak → Ac, and these (again, by comparing on
compacts) factor the natural maps Ak → A∞, as expressed in the square

Ak A∞

Aω
k Ac.

Thus, we obtain a a factorization of the colimiting cocone A→ A∞ through Ac.
Note that there is no homotopy coherence to worry about, as Ac is defined to be a
full subcategory of A∞, so factoring each of the natural maps suffices.

This factorization of the universal cocone and the universal property of the col-
imit give a retraction

A∞ Ac A∞.r

id

The composition Ac ↪→ A∞
r−→ Ac is equivalent to the identity since postcomposing

with the inclusion Ac ↪→ A∞ yields that very inclusion, and fully faithful inclusions
are monomorphisms. Thus Ac ≃ A∞, so A∞ is compactly generated.

The final condition to verify is that for a cocone E under A, the induced map
A∞ → E(▷) preserves compacts. But this is again clear by 11.6 (i), since its right
adjoint preserves filtered colimits, since said right adjoint is the map induced by
the limiting cone of right adjoints, which is simultaneously a limiting cone in PrexL .
This concludes the proof that

Ind: Catperf → PrexL

commutes with colimits. □

Thus we can compute any colimit in Catperf by pushing forward along the Ind-
functor, computing the colimit in PrexL , and then passing back to compact objects,
as expressed by the following chain of equivalences.

colim
K

Ai ≃ (Ind colim
K

Ai)
ω

≃ (colim
K

IndAi)
ω.

General colimits in PrexL are still difficult to compute, but those indexed over

spaces are actually computed as limits in Ĉat∞, as we explain now.
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In case of a diagram F : K → PrexL we may again form the opposite diagram
⃗F : Kop → PrexR and compute its limit to compute the colimit of F . Limits in PrR

(and thus in PrexR ) are formed underlying, so if p : X → K is a cartesian fibration
classified by F op, the ∞-category of its cartesian sections is a model for limF op,
i.e. colimF .

We know that p : X → K is automatically also a cocartesian fibration, classified

by the diagram of left adjoints to ⃗F - that is, (up to equivalence) exactly F . Using

the fact that the inclusion PrexL → Ĉat∞ also preserves limits, by [Lur09, Cor.
5.5.3.13]), we see the limit of F to be the ∞-category of cocartesian sections of
p. If the diagram category K is an ∞-groupoid, being cartesian or cocartesian is
automatic for any section, so indeed we have canonical identifications (in PrexL )

colim
K

F ≃ lim
K

F,

of which ChG ≃ ChG is of course a special case, for any presentable∞-category with
G-action. We thus arrive at the description of homotopy orbits in Catperf promised
above: They identify with the category of compact objects in the homotopy fixed
points of Ind C, taken in PrexL :

ChG ≃ ((Ind C)hG)ω.
Applying the Ind-functor to PerfR of course yields Mod(R), so by the above de-

scription we are looking to identify the∞-category of compact objects inMod(R)hG,
homotopy fixed points taken with respect to the trivial action. The trivial action
classifies the fibration p2 : Mod(R)× BG→ BG so we see its sections to be

Fun/BG(BG,Mod(R)× BG) ≃ Fun(BG,Mod(R))

Thus we may conclude Perf(R)hG ≃ Perf(R[G]) upon confirming

Fun(BG,Mod(R)) ≃Mod(R[G]).

The left hand side is equivalent to Fun(BG,Sp) ⊗Mod(R), since for any pre-
sentable ∞-categories C,D the equivalence

Fun(K, C ⊗ D) ≃ Fun(K, C)⊗D
holds, by identifying both sides with the same full subcategory of Fun(Dop×K, C).

The right hand side is equivalent to Mod(S[G])⊗Mod(R), since for any E1-ring
spectra R and S, the equivalence

Mod(R)⊗Mod(S) ≃Mod(R⊗ S)

holds as a consequence of [Lur17, Thm. 4.8.5.16].
This reduces us to the case R ≃ S, i.e. the claim

Fun(BG,Sp) ≃Mod(S[G]).

The crucial theorem in this identification is the Schwede-Shipley recognition prin-
ciple, which we cite in its ∞-categorical form from [Lur17, Theorem 7.1.2.1], see
also Remark 8.9.

Theorem 11.8 (Schwede-Shipley). Let C be a stable, presentable ∞-category.
Assume there is a compact object c ∈ C which generates C in the sense that

mapC(c, d) ≃ 0 implies d ≃ 0. Then C is equivalent to the ∞-category of right
modules over the endomorphism ring spectrum of c.

We confirm that S[G] ∈ SpBG satisfies the assumptions of Theorem 11.8. Note
that it is the image of the compact generator S ∈ Sp under the ’free/forgetful’
adjunction

Sp SpBG.
−⊗G+

u
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We refer to Appendix B.4 for a neat justification of this description of the left
adjoint to the forgetful functor SpBG → Sp.

Compactness: Given a filtered colimit colimXi, we have

mapSpBG(S[G], colimXi) ≃ mapSp(S, colimuXi)

≃ colimmapSp(S, uXi) ≃ colimmapSp(S[G], Xi)

where we also used that the right adjoint u commutes with colimits, since it itself
admits a right adjoint.

Generation:
If mapSpBG(S[G], X) ≃ 0, then so is mapSp(S, uX) ≃ uX, so X ≃ 0.
Thus one is done if one believes the equivalence of ring spectra

endSpBG(S[G]) ≃ S[G]

and is not particularly careful about the distinction between left and right modules.
For the skeptical, we offer a little more explanation.

We want to avoid wading too deeply into the higher algebra of endomorphism
objects as laid out in [Lur17, Sect. 4.7.1] and take a pragmatic approach. The
pertinent facts are:

• For any∞-category C and any object x ∈ C, the mapping space MapC(x, x)
can be endowed with an E1-structure corresponding to the composition of
maps. We write EndC(x) ∈ SE1 for this object.

• If in addition C is stable, the mapping spectrum mapC(x, x) promotes com-
patibly to an endomorphism ring spectrum endC(x) ∈ SpE1

. Compatible
here means Ω∞ endC(x) ≃ EndC(x, x).

• Every E1-object X has an opposite Xop, obtained by reversing the order
of multiplication. (Note that Lurie writes Xrev for this object.)

• Right modules over a ring spectrum R ∈ SpE1
correspond to left modules

over Rop.
• For group ring spectra R[G], we have R[G]op ≃ Rop[Gop], so in particular
S[G]op ≃ S[Gop].

Thus (with our convention of Mod(−) denoting left modules), Theorem 11.8 pro-
vides an equivalence Fun(BG,Sp) ≃Mod(endSpBG(S[G])op), so it remains to see an
equivalence

endSpBG(S[G])op ≃ S[G].

By construction of the category BG, we have EndBG(∗) ≃ G (as E1-objects in
spaces), and the corepresented functor MapBG(∗,−) : BG→ S models G as a space
with left G-action. The (Co-)Yoneda equivalence

MapSBG(MapBG(∗,−),MapBG(∗,−)) ≃ MapBG(∗, ∗)
reverses order of composition, so promotes to an equivalence of E1-spaces

EndSBG(MapBG(∗,−)) ≃ EndBG(∗)op.
Thus we see the chain of equivalences of E1-spectra

endSpBG(S[G]) ≃ endSpBG(S[MapBG(∗,−)])
≃ S[EndBG(∗)op] ≃ S[Gop]

≃ S[G]op

by the spectral enhancement of the Yoneda lemma of Proposition B.4.
This concludes the proof of Theorem 11.3.



65

12. ’Free’ and ’Borel’ Mackey functors

For what follows, fix a presentable and preadditive∞-category E , such as Catperf
or Sp. We want to specify two fully faithful functors

EBG → MackG(E),

whose essential images in MackG we will to refer to as the free and the Borel Mackey
functors.

Of course, neither the existence nor the fully faithfulness of these adjoints in the
∞-categorical setting are new, see e.g. [NS18, Thm. II.2.7] or [CMNN20, Constr. 2.9
and 2.15], who arrive at similar results with different methods.

To this end, consider the ’underlying object with G-action’-functor of Defini-
tion 7.3

u : MackG(E)→ EBG

given by restriction along

BG→ Span(FinG)
op.

It factorizes as

Fun⊕(Span(FinG)
op, E)→ Fun(Span(FinG)

op, E)→ EBG,

where the first inclusion preserves all limits and colimits by Observation 7.2, and
the second functor always does. Thus, by the adjoint functor theorem, u has both a
left adjoint and a right adjoint (denoted (−)free and (−)Bor respectively) and it will
be our goal to show that these are fully faithful. It will also become clear that for
E = Sp, they recover the classical subcategories of free G-spectra (i.e. those with
X⊗EG+ ≃ X) and of Borel complete G-spectra (i.e. those with X ≃ F (EG+, X)).

The crucial insight is the following result of Saul Glasman, for which we pro-
vide an alternative proof. Let FreeG denote the category of finite free G-sets and
equivariant maps.

Lemma 12.1. [Gla17, Thm. A.1]. For any E presentable and preadditive, restric-
tion along BG =<G/1>op→ Span(FreeG)

op induces an equivalence

Fun⊕(Span(FreeG)
op, E) ∼−→ Fun(BG, E).

In other words, Span(FreeG) is the free presentable preadditive ∞-category on BG.

Equipped with this result, the conclusion that the adjoints to

u : MackG(E)→ EBG

are fully faithful is largely formal. Note that FreeG is disjunctive, and

Span(FreeG) ↪→ Span(FinG)

is the inclusion of a full (since free G-sets only receive maps from free G-sets)
subcategory closed under sums. The functor u : MackG(E) → EBG thus factorizes
as

Fun⊕(Span(FinG)
op, E) res⊕−−−→ Fun⊕(Span(FreeG)

op, E) ∼−→ EBG

and we are reduced to showing that the adjoints of res⊕ are fully faithful. But these
are given by Kan extending along a fully faithful inclusion, by Proposition 3.7, and
hence themselves fully faithful..

As the proof of Lemma 12.1 in [Gla17, App. A] remains somewhat opaque to
the author, let us offer an alternative. We heartily thank Maxime Ramzi for help
with this argument.
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Proof of Lemma 12.1. We recall the situation of Proposition 5.6: Writing L(G) for

the full subcategory of CMonBG spanned by those free on a finite set (Definition 5.3),
the functor

Fun×(L(G)op, E)→ EBG

E 7→ E(FG(1))

is an equivalence. To prove Lemma 12.1, it thus suffices to exhibit an equivalence

Ψ: L(G)op
∼−→ Span(FreeG),

that sends FG(1) to G/1, to ensure the proposed description of the equivalence
Fun×(Span(FreeG)

op, E) ≃ EBG.
Since Span(FreeG) is preadditive, we may use Proposition 5.6 (with E = Span(FreeG))

to construct Ψ, i.e. by exhibiting G/1 as an object of Span(FreeG)
BG.

Of course, the natural choice here is the inclusion

BG =<G/1>op↪→ Span(FreeG),

i.e. we consider G/1 with left action by the spans

(12.2)

G/1

G/1 G/1.

·g =

It remains to see that the functor Ψ is essentially surjective and fully faithful. By
construction, Ψ preserves finite products. Since every object of L(G)op is of the
form FG(n) ≃ ⊕nFG(1) and every object of Span(FreeG) is of the form ⊕nG/1,
essential surjectivity follows immediately from E(FG(1)) = G/1.

To check fully faithfulness, it is then sufficient to see that the map

(12.3) MapL(G)op(FG(1),FG(1))
Ψ−−−→ MapSpan(FreeG)(G/1, G/1)

is an equivalence. As both source and target of Ψ are preadditive categories and
Ψ preserves products, this map naturally lifts to a map of commutative monoids,
and we shall conclude by identifying both sides with the free monoid on the set G,
F(G), such that generators are sent to generators.

Let us first consider the target of 12.3. By Proposition 6.2, it is given as the
maximal subgroupoid contained in the overcategory FreeG/{G/1,G/1}. As FreeG is

a 1-category, this space is modeled by the groupoid of isomorphisms of spans in the
1-categorical sense ([Lur21, Tag 0183]). The isomorphism of spans

G/1

G/1 G/1

G/1

·y ·x

·x

·x−1y
=

shows that the set of spans

(12.4)

∐
i∈n G/1

G/1 G/1

(·gi)i (id)i
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are a set of representants for the isomorphism classes of FreeG/{G/1,G/1}. Note that

the monoid structure is given by forming the coproduct.
Recall that the commutative monoid F(G) is modeled by the symmetric monoidal

1-groupoid
∏

G Fin∼. This follows from Graeme Segal’s classical result that Fin∼

is the free commutative monoid on a point [Seg74, Prop. 3.5], since F : S → CMon
preserves coproducts, and coproducts in CMon are given by products, which are
formed underlying.

Now we give an explicit equivalence of symmetric monoidal 1-categories

(FreeG/{G/1,G/1})
∼ ∼−−−−−→

∏
G

Fin∼,

which in turn specifies an equivalence of the corresponding objects in CMon(S).
We work on skeletons for simplicity.

On objects, we send the span 12.4, denoted s, to the G-tuple (kg)g∈G with g’th
component the finite set with cardinality the number of occurrences of g in (gi)i.
An automorphism of s may only reorder components, to ensure commutativity of
the right triangle, and can send the i’th component to the j’th if and only if gi = gj ,
to ensure commutativity of the left triangle. Thus, we have an obviously functorial
bijection

AutFreeG/{G/1,G/1}
(s) −→

∏
G

Symkg
= Aut∏

G Fin((kg)g∈G).

Note that the generators of the monoid F(G) ≃
∏

G Fin∼ are given by the G-
tuples of finite sets of the form (0, . . . ,1, . . . ,0), which under the given equivalence
correspond to the action maps 12.2.

On the source, the result follows formally, from pushing around adjunctions.
MapL(G)op(FG(1),FG(1)) is (monoidally) equivalent to the underlying commuta-

tive monoid (without G-action) of FG(1), which in turn we identify with F(G) since

the left adjoint to the forgetful functor CMonBG → CMon is given by A 7→ ⊕GA
and F commutes with coproducts.

Under the equivalence uF(G) ≃ MapL(G)op(FG(1),FG(1)), the g’th generator,

i.e. the map {g} ↪→ G→ uF(G) corresponds to F(1)→ ⊕GF(1), inclusion of the

g’th summand, corresponds to the map FG(1)
·g−→ FG(1). By Remark 5.10, the

functor E sends this map to the action-by-g-map on G/1, which we above identified
with the g’th generator on the target. Thus, the map

MapL(G)op(FG(1),FG(1))
E−−−→ MapSpan(FreeG)(G/1, G/1)

is an equivalence. □

Traditionally, we might have defined a free G-spectrum as satisfying XH ≃ XhH

for all subgroups H, and a Borel complete G-spectrum as satisfying XH ≃ XhH .
This characterization holds for Mackey functors, by another observation of Saul
Glasman [Gla17, Lemma 2.28].

We say a full subcategory C ↪→ D is upwardly closed if the existence of a
morphism x → c for c ∈ C implies x ∈ C. The relevant example is of course
FreeG ↪→ FinG.

Proposition 12.5. Let C ↪→ D be a fully faithful inclusion of an upwardly closed
subcategory which is closed under pullbacks. Consider a functor F : Span(C) → E
and form its left Kan extension lF along Span(C)→ Span(D). Then its restriction



68

to D is itself left Kan extended from C.

C Span(C) E

D Span(D)

F

lF

Let us summarize the rewards of Proposition 12.5 before proving it.

Remark 12.6. Starting with an object X ∈ EBG, we take F to be the sum-
preserving functor Span(FreeG)→ E supplied by Lemma 12.1. Its left Kan exten-
sion to Span(FinG) is then the Mackey functor Xfree. The above theorem says that
the restriction of Xfree to OrG is again Kan extended from <G/1>, i.e. its values
are the homotopy orbits of X (in light of Propositions 3.8 and 3.9). Put differently,
this procedure promotes the canonical diagram

OrG → E , G/H 7→ XhH

induced by X to a (free) Mackey functor.

Proof of Theorem B. By the above, there is a free Mackey functor PerfRfree valued
in Catperf obtained from PerfR ∈ CatBGperf by left Kan extension. Its underlying
functor

u⃗(PerfRfree) : OrG → Catperf

is also left Kan extended, i.e. takes values

G/H 7→ (BH ⊗ PerfR) ≃ Perf(R[H]).

For any additive functor E : Catperf → Sp (such as K-theory), the composition

SpanopG
PerfRfree−−−−−−→ Catperf

E−→ Sp

is then a spectral Mackey functor, i.e. a genuine G-spectrum with prescribed un-
derlying OrG-spectrum

G/H 7→ E(PerfR[H]).

□

We also note that the whole situation dualizes without resistance, proving The-
orem B’.

Proof of Theorem B’. By the dual version of Proposition 12.5 above, there is a
Borel Mackey functor PerfRBor valued in Catperf obtained from PerfR ∈ CatBGperf
by right Kan extension. Its underlying functor

⃗u(PerfRBor) : OropG → Catperf

is also right Kan extended, i.e. takes values

G/H 7→ (lim
BH

PerfR) ≃ Fun(BH,Perf(R)).

For any additive functor E : Catperf → Sp (such as K-theory), the composition

SpanopG
PerfRBor−−−−−−→ Catperf

E−→ Sp

is then a spectral Mackey functor, i.e. a genuine G-spectrum with prescribed un-
derlying OrG-spectrum

G/H 7→ E(Fun(BH,Perf(R)).

□
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Proof of Proposition 12.5. Let us first remark that if C is upwardly closed in D, the
functor Span(C) → Span(D) is fully faithful. In Lemma 6.7, we showed that the
induced functor of overcategories D/d → Span(D)/d is also fully faithful, and so are
the vertical functors in the square

C/d Span(C)/d

D/d Span(D)/d.

The left adjoint to the bottom horizontal map we constructed in Lemma 6.7 clearly
restricts to a functor Span(C)/d → C/d, so the top horizontal map also has a left

adjoint, and is thus final by [Lur21, Tag 02P3].9

Now the left Kan extension lF : Span(D) → E is characterized by the property
that the natural contraction morphism

(Span(C)/d)▷ → E
is a colimiting cocone, and thus (by finality of C/d → Span(C)/d) so is

(C/d)▷ → (Span(C)/d)▷ → E ,
which is exactly the condition that identifies the composition D → Span(D) → E
to be left Kan extended from C. □

9Note that Lurie refers to the property that we call final as right cofinal
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Appendix A. Identification of norm maps

We explain why for X a genuine G-spectrum, the composition

ΦX : (EG+ ⊗X)G → XG → F (EG+, X)G

identifies with the norm map

nmX : XhG → XhG.

Crucially, the norm map nm has a universal property: Theorem B of [Kle02]
characterizes it as the terminal left approximation of the functor

(−)hG : SpBG → Sp

by a colimit-preserving functor. Identifying (EG+⊗X)G withXhG and F (EG+, X)G

with XhG as we did in the proof of Proposition 10.1, we produce a canonical dashed
comparison map

(EG+ ⊗X)G XG F (EG+, X)G ≃ XhG

XhG

α

nm

and we would like to see it an equivalence.
First we note that, as in the proof of Proposition 10.1, source and target of ΦX

depend only on the underlying spectrum with G-action of X, so replacing X along
(uX)free → X gives equivalent maps Φ. Thus we are reduced to considering free X.

Recall the free-forgetful adjunction from Chapter 12, which identifies SpBG with
the full subcategory (SpG)free of free G-spectra:

SpBG (SpG)free. SpG
∼

(−)free

u

Since S[G] is a generator of SpBG in the sense of Remark 8.9, S[G]free generates
the (colimit-closed) subcategory (SpG)free, and it thus suffices to see that α is an
equivalence on the object

X = S[G]free.

First note that S[G]free coincides with SG[G/1]: In the commutative diagram of
’free’ left adjoints

S SBG SG

Sp SpBG SpG,

SG

S[G]free is the image of ∗ along the lower horizontal, while SG[G/1] is the image of
∗ along the upper horizontal, see also App. B.4.

Now the result will follow if we see that ΦSG[G/1] and nmS[G] are equivalences.
The latter statement is [Lur17, Ex. 6.1.6.26].

As summarized in Remark 12.6, the map (EG+ ⊗X)G → XG is an equivalence
for free X. By the techniques of Example 8.6, for X = SG[G/1] the map

(A.1) XG → F (EG+, X)G
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identifies with

SG[G/1](G/G) limBG SG[G/1](−)

(FinG/{G/1})
∼,gp limBG(FinG/{G/1,G/1})

∼,gp,

∼ ∼

where the functor FinG/{G/1} → FinG/{G/1,G/1} is given by

(U
f−→ G/1) 7→ (G/1× U

(id,f)−−−→ G/1×G/1),

as can be seen by computing the composition of spans

G/1 U

G/1 G/G G/1.

We have identified FinG/{G/1} with Fin at the very end of Example 8.6, and

we have identified FinG/{G/1,G/1} with
∏

G Fin in the proof of Lemma 12.1. Under

these identifications, we calculate the map in question to be given by the diagonal

Fin
△−−−−−→

∏
G

Fin

S 7−−−−−→ (S)g∈G.

With (Fin)∼,gp ≃ S and (
∏

G Fin)∼,gp ≃
⊕

G S, we have finally identified the
map A.1 with

S △−−−−−→ (
⊕
G

S)hG

which is an equivalence, and we conclude.
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Appendix B. ∞-categorical generalities

This appendix is a collection of observations on ∞-categories that were deemed
to interrupt the flow of exposition too much. Everything here is likely written down
somewhere else, or at least well-known to experts. We will be very concrete and
detailed sometimes, but also not shy away from blackboxing big parts of the theory.

B.1. Overcategories & undercategories. An important tool in the theory of∞-
categories is the formation of overcategories C/p for C an∞-category and p : K → C
a diagram in C, as well as the dual notion of undercategories Cp/. We define these
as explicit simplicial sets as follows.

Recall the join K ⋆ S of two simplicial sets K,S of [Lur09, Def. 1.2.8.1]. It is a
functor

K ⋆− : sSet→ sSetK/

and likewise in the other variable, characterized by admitting canonical isomor-
phisms ∆i−1 ⋆∆j−1 ≃ ∆i+j−1 and preserving colimits in either variable. Geomet-
rically, we picture it as constructed from K

∐
S by adjoining an edge k → s for

every pair of vertices (k, s) ∈ K0 × S0, a corresponding 2-simplex for every pair
(e, s) ∈ K1 × S0 as well as (k, e) ∈ K0 × S1 and so forth.

Now, given a map of simplicial sets p : K → C, we define the simplicial set C/p
by the requirement

Hom(X, C/p) = HomK/(X ⋆K, C),
and dually the simplicial set Cp/ by the requirement

Hom(X, Cp/) = HomK/(K ⋆X, C).

Specializing to X = ∆n, this concretely describes the set n-simplices of C/p as

the set of maps ∆n ⋆K → C restricting to p on K. Further specializing to K = ∆0

(and identifying p with its value c ∈ C), we note that the n-simplices of C/c are
exactly the (n+ 1)-simplices of C with final vertex c.

We have obvious projection maps C/p → C and Cp/ → C, given on n-simplices by
restricting along ∆n ↪→ ∆n ⋆ K and ∆n ↪→ K ⋆∆n respectively.

It is a fundamental theorem of André Joyal [Joy02] that if C is an ∞-category,
these projection maps are right and left fibrations respectively, and as a con-
sequence, C/p and Cp/ are ∞-categories. Specializing to K = ∆0 again, these
straighten to functors

Cop → S and C → S
which give functorial models for the mapping spaces mapC(−, x) and mapC(x,−)
respectively. In particular, mapping spaces in an∞-category C sit in a natural fiber
sequence

mapC(x, y) C/y C,

(x→ y) (x→ y) x,

of which we will make use often.

Remark B.1. Here, the fiber taken in the 1-category sSet models the fiber taken
in the ∞-category Cat∞, since the relevant map is a right fibration and thus a
categorical fibration. We of course prefer to view this as a fiber sequence in Cat∞,
with its cone point happily contained in the full subcategory S ↪→ Cat∞.

As an application, the mapping spaces of C/c may be described as fibers of
mapping spaces of C by the exact formula one might guess from 1-category theory:
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Proposition B.2. Given maps f : x→ c and g : y → c in C, consider the map

MapC(x, y)
g◦−−−→ MapC(x, c).

Then MapC/c
(f, g) identifies with the fiber (in S) of MapC(x, y)→ MapC(x, c),

taken at f .

Proof. In the following, all fiber constructions are considered in Cat∞.
Above, we defined MapC/c

(f, g) as the fiber of (C/c)/g → C/c at f . We want

to identify the domain of this map with C/y. Unraveling the definition, we see an
honest isomorphism of simplicial sets

(C/c)/g ∼= C/g.

Now the map C/g → C/y induced by ∆0 0
↪−→ ∆1 is an equivalence of ∞-categories

by [Lan21, Cor. 1.4.24(2)], so MapC/c
(f, g) is the fiber of C/y → C/c at f , with

the map given by composing with g (see loc.cit. for a detailed construction of the
map C/y → C/c). Thus, starting with the diagram of the two lower horizontal fiber
sequences, we take vertical fibers and see the square

F MapC/c
(f, g) ∗

MapC(x, y) C/y C

MapC(x, c) C/c C.

g◦− g◦− =

Since the top row of vertical fibers then also forms a fiber sequence, the map
F → MapC/c

(f, g) is an equivalence of ∞-categories.

The inclusion of the full subcategory S ↪→ Cat∞ is a right adjoint and preserves
the terminal object ∗, so preserves fiber sequences, so we may consider this a fiber
sequence in S. □

B.2. Internal Function-objects. Consider a presentably symmetric monoidal
∞-category C, i.e. a commutative algebra-object in PrL with respect to the Lurie
tensor product [Lur17, Ch. 4.8]. The symmetric monoidal structure is classified by
a functor

C × C −⊗−−−−→ C
preserving colimits in either variable. Fixing the first variable, we have an adjunc-
tion

C C
−⊗x

F (x,−)

by the adjoint functor theorem [Lur09, Prop. 5.5.2.9].
One should hope that the construction (x, y) 7→ F (x, y) promotes to a functor

Cop × C → C,

and that this functor has the expected mapping properties on limits and colimits,
i.e. that it preserves limits in the second variable and transforms colimits (in C,
not Cop) into limits in the first variable. We will construct the functor and prove
the specified mapping properties.

Indeed, if such a functor existed, postcomposing it with the Yoneda-embedding
j : C → P(C) would give a functor

Cop × C → P(C), (x, y) 7→ MapC(−, F (x, y)).
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Now by the defining adjunction, we have a natural equivalence of spaces

MapC(−, F (x, y)) ≃ MapC(−⊗ x, y)

and the latter construction is evidently functorial Cop × C → P(C) as an adjoint
construction to

Cop × Cop × C → S
(z, x, y) 7→ MapC(z ⊗ x, y).

The mere existence of internal function objects equivalently says that the above
functor

Cop × C (x,y)7→MapC(−⊗x,y)−−−−−−−−−−−−−−−−−→ P(C)
takes values in the image of the Yoneda-embedding j. Since j is of course fully
faithful, we may lift against it to obtain the factorization

C

Cop × C P(C),

j

MapC(−⊗x,y)

F (x,y)

so we have constructed the desired functor.
Certainly the functor

Cop × C → P(C), (x, y) 7→ MapC(−⊗ x, y)

preserves limits in the second variable and (since the tensor product commutes
with colimits) transforms colimits in the first into limits. By [Lur09, Prop. 5.3.1.2],
the Yoneda-embedding preserves all limits which exist in C (i.e. all limits) so we
conclude the same for F (x, y).

Remark B.3. As a simple application of this principle, we have that for a space
X a constant limit of shape X with value E is given by F (1C ⊗X,E):

lim
X

E ≃ lim
X

F (1C , E)

≃ F (colim
X

1C , E)

≃ F (1C ⊗X,E).

B.3. The spectral Yoneda lemma. We prove the following easy enhancement
of the ∞-categorical Yoneda lemma.

Proposition B.4. Let D be an ∞-category and F : D → Sp some functor. For
any object d of D, we have an equivalence of spectra

mapSpD

(
S[ MapD(d,−) ], F

)
≃ F (d).

Proof. From the adjunction

SD SpDS[−]

Ω∞

and the ordinary (∞-categorical) Yoneda lemma, we readily derive the natural
equivalence of underlying spaces

MapSpD

(
S[ MapD(d,−) ], F

)
≃ Ω∞F (d).

To promote this to an equivalence of spectra, observe that by [Lur17, Cor. 1.4.2.23]
for C stable and any two exact functors G,H : C → Sp, an equivalence of underlying
spaces

Ω∞G ≃ Ω∞H
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always promotes to one of G and H. Applying this in the situation C = SpD,

G(?) = mapSpD

(
S[ MapD(d,−) ], ?

)
,

and H = evd gives the claimed equivalence. □

B.4. Free G-objects via Kan extensions. Given an ∞-category C, we have a
forgetful functor from objects of C equipped with an action by a group G to C,

u : CBG → C
given by restriction along ∗ → BG. For C presentable, u admits a left adjoint, given
by the ’free G-object’ on x ∈ C. It certainly seems plausible that this should be∐

G x, and indeed it is.
In the body of the text we introduced Kan extensions only for fully faithful

inclusions I ↪→ J , but we take the liberty of assuring the concerned reader that
left Kan extensions exist along arbitrary transformations of diagrams, and (given
the required existence of colimits in C) again furnish a left adjoint to the restriction
functor. Further, the same formula holds: Given diagrams I → J and a functor
F0 : I → C, the left Kan extension F is characterized by

F (x) ≃ colim(I/x → I → C).
Note that in this more general situation, it is no longer true that F0(i) ≃ F (i) for
i ∈ I.

In the situation of left Kan extending along ∗ → BG, we thus want to compute

colim(K → ∗ x−→ C),
where K is the relevant relative overcategory, i.e. the pullback

K BG/∗

∗ BG.

Of course, by the usual description of mapping spaces as fibers of this right fibration,
the pullback K is

MapBG(∗, ∗) ≃ ΩBG ≃ G.10

Thus, the free G-object on x is given by the colimit of the constant functor from
G with value x, that is

∐
G x. A further inspection shows that the action of G is

indeed given by permuting the summands, as expected.

10Alternatively, one could of course argue that BG/∗ is contractible.
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Appendix C. Zusammenfassung in deutscher Sprache

Ausgangspunkt der vorliegenden Arbeit ist ein Theorem von Cary Malkiwiech
[Mal17]. Es besagt dass die sogenannte assembly map in der algebraischen K-
theorie eines Gruppenringes bezüglich einer endlichen Gruppe eine duale coassem-
bly map zulässt, so dass die Komposition beider die norm map auf der K-Theorie
des zugrundeliegenden Ringes formt. Während Malkiewich den Beweis mit ge-
ometrischen Methoden und einem genauen Studium konkreter Modellkategorien
parametrisierter Spektren antritt, nutzen wir gänzlich andere Methoden. Die entschei-
denden Einflüsse sind erstens die equivariante Perspektive auf die assembly map
von John Davis und Wolfgang Lück [DL98], und zweitens der präzise Zugang zu
genuin-equivarianter Homotopietheorie den die Theorie von spektralen G-Mackey
Funktoren [GM17a],[Bar17] erlaubt. Zusätzlich arbeiten wir ausschließlich in der
modernen Sprache von ∞-Kategorien, die es uns ermöglicht präzise Definitionen
mittels universeller Eigenschaften zu formulieren.

Nach der Einführung in Kapitel 1 erinnern wir in Kapitel 2 an einige zugrun-
deliegende Konzepte der Homotopietheorie aus der Perspektive von ∞-Kategorien.
In Kapitel 3 geben wir eine auf unsere Anwendungen fokussierte Übersicht über
Kan-Erweiterungen entlang Inklusionen voller Unterkategorien, und berechnen konkrete
Beispiele. In Kapitel 4 definieren wir die assembly maps, zunächst nach Weiß-
Williams [WW95] und dann nach Davis-Lück [DL98]. Wir liefern einen konzeptuellen
Beweis in moderner Sprache dass beide Konstruktionen, nach den nötigen Identi-
fikationen, übereinstimmen.

In Kapitel 5 sammeln wir einige klassische oder zumindest bekannte Ergebnisse
über kommutative Monoide (also E∞-Algebren bezüglich der kartesisch-monoidalen
Struktur), mal mit Wirkung einer Gruppe, mal mit Werten in einer präsentablen
∞-Kategorie.

In Kapitel 6 definieren wir, [Bar17] folgend, die Spann-Kategorie einer disjunk-
tiven ∞-Kategorie C. Wir beweisen ein technisches Lemma über das Verhältnis
der Kommakategorien C/c und Span(C)/c, welches uns erlauben wird gewisse Kan-
Erweiterungen zu identifizieren.

In Kapitel 7 definieren wir die∞-Kategorie MackG(E) der G-Mackey Funktoren
mit Werten in einer präadditiven ∞-Kategorie E , und in Kapitel 8 widmen wir uns
dem Studium des Spezialfalles E = Sp, der∞-Kategorie der Spektren. Wir bereiten
alles nötige vor um in Kapitel 9 dann den Beweis nach [CMNN20] zu geben dass
MackG(Sp) genau die ∞-Kategorie genuiner G-Spektren modelliert.

In Kapitel 10 identifizieren wir, die Definition der Norm-Abbildung für gen-
uine G-Spektren aus [GM95] zugrundelegend, die Komposition aus assembly und
coassembly mit der Norm-Abbildung für gewisse Funktoren S → Sp. Entscheidend
ist hier der Übergang zum Davis-Lück-Modell der (co-)assembly maps und dem
Verständnis genuiner G-Spektren als Diagram-Kategorien.

Es folgt in Kapitel 11 ein Studium (der Bildung gewisser Kolimiten in) der ∞-
Kategorie Catperf der stabilen, idempotent-vollständigen ∞-Kategorien, welches
uns dann in Kapitel 12 ermöglicht Catperf als Koeffizienten-Kategorie E für Mackey
Funktoren zu nutzen. Eine genaue Untersuchung der Relation zwischen ’naiven’ G-
Objekten (also Fun(BG, E)) und ’genuinen’ G-Objekten (also MackG(E)) erlaubt es
dann nachzuweisen, dass Waldhausen A-Theorie (mit Koeffizienten in einem beliebi-
gen E1-Ring Spektrum) die nötige Bedingung für die Identifikation aus Kapitel 10
erfüllt.

Im Anhang A geben wir die Identifikation der Greenlees-May-Konstruktion der
Norm-Abbildung für genuineG-Spektren mit der universellen Eigenschaft der Norm-
Abbildung des unterliegenden naiven G-Spektrums nach [Kle02], und in Anhang B
sammeln wir einige kleine Ergebnisse über ∞-Kategorien.
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