dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2018-06-07T17:38:13Z
dc.date.available
2006-05-02T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/4088
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-8288
dc.description
Frontpage and Table of Contents
Introduction 1
1. Theoretical Background 5
1.1. Ultrafast Processes in Optically Excited Metals 5
1.2. Model Hamiltonian of a Crystalline Solid 7
1.3. Population Dynamics and 2-Temperature Model 8
1.4. What Is Measured in an Optical Experiment? 10
1.5. Microscopic Models for the Dielectric Function 13
1.6. Optical Transitions in Crystalline Solids 16
1.7. Remarks 20
1.8. Rapidly Changing Sample 21
2. Nonlinear Wave Propagation 25
2.1. Wave Equation 25
2.2. Linear Optics 25
2.3. Nonlinear Polarization: 2 Examples 26
2.4. Solution of Wave Equation: Perturbational Approach 30
2.5. 1-Dimensional Case 32
2.6. Applications 34
3. Experimental Details 37
3.1. Laser Systems 37
3.2. THz Spectrometer 39
3.3. Work Sequence of THz Spectroscopy 43
3.4. Extraction of the Dielectric Function 45
4. Graphite: Strongly Coupled Optical Phonons in Action 47
4.1. Motivation 47
4.2. General Properties 48
4.3. Electronic Structure 49
4.4. Phonons and Their Coupling to Electrons 53
4.5. Optical Properties 54
4.6. Experimental and Technical Details 55
4.7. Results: Unexcited Sample 59
4.8. Results: Excited sample 62
4.9. Conclusion and Outlook 69
5. Carbon Nanotubes: Excitons, Localized and Delocalized Carriers 71
5.1. Motivation 71
5.2. General Properties 72
5.3. Electronic Structure 72
5.4. Phonons 76
5.5. Optical Properties 76
5.6. Ultrafast Dynamics in Optically Excited Carbon Nanotubes 77
5.7. Experimental and Technical Details 79
5.8. Results: Unexcited Sample 84
5.9. Results: Excited Sample 85
5.10. Conclusion and Outlook 91
6. Optically Ionized Gases: Long- and Short-Lived Electrons 93
6.1. Motivation 93
6.2. Partially Ionized Gases and Plasmas 94
6.3. Dynamics of Optically Ionized Gases 95
6.4. Optical Properties of a Plasma 96
6.5. Experimental and Technical Details 97
6.6. Results: Dynamics of the Free-Electron Density 102
6.7. Results: Electron Collision Rate 107
6.8. Conclusion and Outlook 111
Summary 113
Appendices 117
A. Frequently Used Quantities and Abbreviations 117
B. Mathematical Definitions and Theorems 119
C. Details of Numerical Calculations for Graphite 121
Bibliography 125
Publications 137
Deutsche Kurzfassung 139
Danksagung 143
dc.description.abstract
This thesis deals with the dynamics of charge carriers in optically excited
solids and gases. The manner in which the excited electrons relax their energy
and their average velocity is of particular importance in terms of technical
applications. For example, graphite and, in particular, carbon nanotubes are
potential alternatives to traditional semiconductors as base material for
smaller and faster electronic devices. Therefore, electrons in these materials
should relax their energy as slowly as possible and maintain an electronic
current as long as possible when the driving electric field is switched off.
The opposite behavior is required for insulating gases in high-voltage
devices: Quasifree electrons should decay quickly and exhibit a low mobility
in order to prevent short-circuits.
The conductivity of a material is determined by the electrons with the lowest
excitation energies, for instance the electrons around the Fermi energy of a
metal. Therefore, THz radiation is particularly sensitive to these charge
carriers due to its very low photon energy. In this thesis, time-resolved THz
spectroscopy is the method of choice in which an ultrashort visible laser
pulse excites the charge carriers in the sample. After a variable temporal
delay, they are probed by a THz pulse.
Two THz spectrometers were built in the course of this work. One of them is
driven by a laser oscillator delivering 10-fs laser pulses with a 10-nJ pulse
energy. It is used for the measurements of graphite and carbon nanotubes.
However, the optical ionization of gas molecules requires much higher
intensities and therefore another spectrometer driven by 20-fs laser pulses
with a 1-mJ pulse energy. The THz pulses obtained have a duration of about
100fs and cover the spectral range from 10 to 25THz. It should be emphasized
that the electric field of the THz pulse is detected which allows to determine
the instantaneous dielectric function of the excited sample. The extraction of
the dielectric function in a pump-probe experiment has to take the THz
propagation through the excited sample into account. Corresponding relations
have been derived in this work.
In the semimetal graphite, the analysis of the transient dielectric function
is based on linear-response theory and yields the temporal evolution of 3
important observables of the excited system: The electronic temperature, the
plasma frequency, and the Drude scattering rate. Our data exhibit a twofold
dynamics: Within the first 500fs, the electrons thermalize and lose more than
90% of their initial excess energy. This is an amazing result since the small
Fermi surface of graphite implies that only ~1% of all phonon modes can
directly dissipate the electronic heat. Our simulations based on the
2-temperature model reveal that strongly coupled optical phonons with quantum
energies of up to 0.2eV dominate the energy transfer until they have heated
up. The remaining slow decay of the electronic temperature is due to the
cooling of these hot phonons by other, cold vibrational modes with a 5.4-ps
time constant. In addition, the Drude collision rate of the electrons is found
to increase by more than 30% during the first ps after excitation. This is at
least one order of magnitude larger than found in comparable experiments on
doped semiconductors. Numerical estimates show that the hot phonons can
explain a significant part of this rise. Therefore, they might limit the
performance of graphite and carbon-nanotube circuits at elevated temperatures
and high frequencies. On the other hand, these results show a route to
populate certain phonon modes selectively which might be exploited in fields
like surface femtochemistry.
In our carbon-nanotube sample, the pump pulse excites all types of tubes which
can be metallic or exhibit electronic energy gaps of ~20meV or ~1eV. The THz
spectra lack a signature of free charge carriers which clearly indicates that
strongly bound excitons are the main product of photoexcitation of the tubes
with an energy gap of ~1eV. We find a spectral feature of enhanced
transmission which is caused by the blocking of optical transitions in tubes
with an energy gap of ~20meV. Similar to the dynamics in graphite, the decay
of this feature is assigned to the cooling of hot optical phonons by other,
cold phonons with a time constant of 1ps. This is significantly faster than in
graphite and points to a stronger anharmonic coupling between the phonon modes
of the nanotube. Finally, a small and featureless background of increased
absorption exhibits a remarkable optical anisotropy. By using simple
geometrical arguments, this can be directly traced back to the localization of
charge carriers on a length scale of 100nm. We can consistently assign the
localized excitations to optical transitions between higher-lying
intraexcitonic levels in the tubes with energy gaps of ~1eV. These levels are
rapidly depopulated with a time constant of 150fs. These findings may be of
great importance for the application of carbon nanotubes in photoconductive
and nanoelectronic devices.
In the experiments with optically excited gases, the pump pulse is found to
ionize about 1% of all molecules. The THz response of the quasifree electrons
is well described by the Drude model and yields the temporal evolution of the
electron density and the Drude collision rate. The electrons in ionized Ar
decay on a time scale of more than 1ns which is an order of magnitude slower
than in O2 and due to a lacking dissipation channel for the kinetic and the
binding energy of the electron. However, the electron decay can be accelerated
enormously by adding the electron scavenger SF6 to Ar. In pure SF6, the free-
electron decay occurs with a time constant as short as 12ps which directly
demonstrates the ultrafast extinction of free electrons in SF6. It allows for
a reliable estimate of the electronic temperature of 17000 to 23000K. The
Drude scattering rate was found to increase with the electron density. A model
based on the Boltzmann equation which only accounts for collisions between
electrons and ions and electrons and neutral particles underestimates the
measured collision rates significantly. This and the fact that the electron
capture by SF6 does not increase the Drude scattering rate might point to a
dominant contribution of electron-electron scattering to the current
relaxation. The measurements demonstrate that THz spectroscopy provides new
and important information on the dynamics of quasifree electrons in gases.
de
dc.description.abstract
Die vorliegende Arbeit untersucht die ultraschnelle Ladungsträgerdynamik in
Graphit, Kohlenstoff-Nanoröhrchen und optisch ionisierten Gasen mit Hilfe der
zeitaufgelösten THz- Spektroskopie. Bei dieser sogenannten Anrege-Abfrage-
Technik regt ein sichtbarer Laserpuls die Probe an, die nach einer variablen
Verzögerungszeit von einem THz-Puls abgefragt wird. Dabei hat man die volle
Information über Amplitude und Phase des Abfragepulses und somit Zugriff auf
die momentane komplexe dielektrische Funktion der Probe im Spektralbereich von
etwa 10 bis 30THz.
Im Halbmetall Graphit ergibt die Datenanalyse, daß mehr als 90% der
absorbierten Anregungsenergie innerhalb von 500fs vom Elektronensystem ins
Kristallgitter transferiert werden. Dies ist erstaunlich, da nur ~1% aller
Phononenwellenvektoren an der Elektron-Phonon-Streuung teilnehmen können.
Modellrechnungen zeigen, daß der Energietransfer von optischen Phononen mit
sehr hohen Quantenergien und starker Kopplung an die Elektronen dominiert
wird. Diese wenigen Phononenmoden heizen sich auf und werden auf einer
Zeitskala von 5ps durch andere, noch kalte Phononen abgekühlt. Diese
Ergebnisse weisen einen Weg, wie man mit Hilfe eines kurzen Laserpulses
selektiv wenige Gitterschwingungen eines Halbmetalls aufheizen kann.
In der Probe mit den Kohlenstoff-Nanoröhrchen wird der Anregungspuls sowohl
von halbleitenden Röhren mit einer Bandlücke von ~1eV als auch "metallischen"
Röhren mit einer Bandlücke von 0 oder ~20meV absorbiert. Die gemessenen THz-
Spektren weisen keine Signatur freier Ladungsträger auf. Das ist ein klares
Zeichen dafür, daß in hableitenden Röhren hauptsächlich stark gebundene
Exzitonen anstatt freier Elektron-Loch-Paare erzeugt werden. Spektrale Anteile
mit verringerter Absorption werden durch das Blockieren von optischen
Übergängen in den "metallischen" Röhren verursacht. Analog zu Graphit wird das
Abklingen dieses Signals mit einer Zeitkonstanten von 1ps auf das Kühlen
heißer optischer Phononen zurückgeführt. Die spektralen Anteile mit erhöhter
Absorption zeigen einen deutlichen Dichroismus, woraus wir auf eine
Lokalisierung der zugrundeliegenden Anregungen auf einer Längenskala von 100nm
schließen. Intraexzitonische Übergänge werden als Quelle für dieses Signal
vorgeschlagen. Seine Abklingzeit von 150fs legt damit die Zeitskala für die
Entvölkerung der höherliegenden exzitonischen Niveaus fest.
In den Experimenten mit Gasen ionisiert ein intensiver Anregungspuls etwa 1%
aller Moleküle. In Ar verschwinden die freien Elektronen auf einer Zeitskala
von mehr als 1ns. Dies ist eine Größenordnung langsamer als in O2 und auf
fehlende Dissipationskanäle für die kinetische Energie und Bindungsenergie des
Elektrons zurückzuführen. Die Rekombinationsrate von Ar kann durch Zugabe des
Schutzgases SF6 enorm beschleunigt werden. In reinem S6 relaxiert die
Elektronendichte mit einer Zeitkonstanten von nur 12ps bei einer
Elektronentemperatur von etwa 20000K. Die elektronische Drude-Streurate steigt
monoton mit der Elektronendichte und ist wesentlich größer als von einem
Modell vorhergesagt, das auf der Boltzmann-Gleichung und Elektron-Ion-Streuung
bei statischer Abschirmung basiert. Dies zeigt, daß weitere Effekte wie etwa
Elektron-Elektron-Streuung und dynamische Abschirmung der Coulomb-
Wechselwirkung bei der theoretischen Behandlung der Leitfähigkeit von
Gasplasmen im THz-Bereich berücksichtigt werden müssen.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Charge-Carrier Dynamics in Solids and Gases Observed by Time-Resolved
Terahertz Spectroscopy
dc.contributor.firstReferee
Prof. Dr. Martin Wolf
dc.contributor.furtherReferee
Prof. Dr. Rolf Diller
dc.contributor.furtherReferee
Prof. Dr. Thomas Elsässer
dc.date.accepted
2006-01-30
dc.date.embargoEnd
2006-05-03
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000002101-8
dc.title.translated
Untersuchung der Ladungsträgerdynamik in Festkörpern und Gasen mit
zeitaufgelöster Terahertz-Spektroskopie
de
refubium.affiliation
Physik
de
refubium.mycore.fudocsId
FUDISS_thesis_000000002101
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2006/250/
refubium.mycore.derivateId
FUDISS_derivate_000000002101
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access