# Charge-Carrier Dynamics in Solids and Gases Observed by Time-Resolved Terahertz Spectroscopy

Im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation





Tobias Kampfrath

Dezember 2005

Diese Arbeit entstand in der Arbeitsgruppe von Prof. Dr. Martin Wolf an der Freien Universität Berlin.

Berlin, im Dezember 2005

Erstgutachter: Prof. Dr. Martin Wolf Zweitgutachter: Prof. Dr. Rolf Diller Drittgutachter: Prof. Dr. Thomas Elsässer

Tag der Disputation: 30. Januar 2006

| Introduction |                   |                                                                          |                 |  |  |  |
|--------------|-------------------|--------------------------------------------------------------------------|-----------------|--|--|--|
| 1.           | The               | pretical Background                                                      | 5               |  |  |  |
|              | 1.1.              | Ultrafast Processes in Optically Excited Metals                          | 5               |  |  |  |
|              | 1.2.              | Model Hamiltonian of a Crystalline Solid                                 | 7               |  |  |  |
|              | 1.3.              | Population Dynamics and 2-Temperature Model                              | 8               |  |  |  |
|              |                   | 1.3.1. Rate Equations                                                    | 8               |  |  |  |
|              |                   | 1.3.2. 2-Temperature Model for Metals                                    | 9               |  |  |  |
|              | 1.4.              | What Is Measured in an Optical Experiment?                               | 10              |  |  |  |
|              |                   | 1.4.1. Induced Electric Polarization                                     | 11              |  |  |  |
|              |                   | 1.4.2. Dielectric Function $\varepsilon$                                 | 11              |  |  |  |
|              | 1.5.              | Microscopic Models for $\varepsilon$                                     | 13              |  |  |  |
|              |                   | 1.5.1. Classical Models                                                  | 13              |  |  |  |
|              |                   | 1.5.2. Semiclassical Theory: Boltzmann Equation                          | 14              |  |  |  |
|              |                   | 1.5.3. Quantum-Mechanical Theory: Kubo Formula                           | 15              |  |  |  |
|              |                   | 1.5.4. Local Electric Field                                              | 16              |  |  |  |
|              | 1.6.              | Optical Transitions in Crystalline Solids                                | 16              |  |  |  |
|              |                   | 1.6.1. Direct Optical Transitions                                        | 17              |  |  |  |
|              |                   | 1.6.2. Indirect Optical Transitions                                      | 19              |  |  |  |
|              | 1.7.              | Remarks                                                                  | 20              |  |  |  |
|              | 1.8.              | Rapidly Changing Sample                                                  | 21              |  |  |  |
|              |                   | 1.8.1. General Linear Response                                           | 21              |  |  |  |
|              |                   | 1.8.2. Instantaneous Spectral Response                                   | 22              |  |  |  |
| 2            | Non               | linear Wave Propagation                                                  | 25              |  |  |  |
| 2.           | 2.1               | Wave Equation                                                            | 25              |  |  |  |
|              | 2.1.              | Linear Optics                                                            | $\frac{20}{25}$ |  |  |  |
|              | 2.2.              | Nonlinear Polarization: 2 Examples                                       | $\frac{20}{26}$ |  |  |  |
|              | 2.0.              | 2.3.1 Sum- and Difference-Frequency Mixing: THz Generation and Detection | $\frac{20}{26}$ |  |  |  |
|              |                   | 2.3.2 Pump-Probe Experiments                                             | $\frac{20}{28}$ |  |  |  |
|              | 2.4               | Solution of Wave Equation: Perturbational Approach                       | 30              |  |  |  |
|              | $\frac{2.1}{2.5}$ | 1-Dimensional Case                                                       | 32              |  |  |  |
|              | 2.0.              | 2.5.1 Film between 2 Half-Spaces                                         | 32              |  |  |  |
|              |                   |                                                                          | 94              |  |  |  |

|    | 2.6. | Applications                                                                                                              | 34         |
|----|------|---------------------------------------------------------------------------------------------------------------------------|------------|
|    |      | 2.6.1. THz Generation in GaSe                                                                                             | 34         |
|    |      | 2.6.2. Probe-Pulse Propagation                                                                                            | 35         |
| 3. | Exp  | erimental Details 3                                                                                                       | 7          |
| •  | 3.1. | Laser Systems                                                                                                             | 37         |
|    | 0.1. | 3.1.1 MHz-Laser Oscillator                                                                                                | 37         |
|    |      | 3.1.2 kHz-Amplified Laser System                                                                                          | 38         |
|    | 3.2  | THz Spectrometer                                                                                                          | 39         |
|    | 0.2. | 3.2.1 THz Generation 4                                                                                                    | 10         |
|    |      | 3.2.2 THz Detection 4                                                                                                     | 11         |
|    |      | 3.2.3. Computer-Controlled Data Acquisition                                                                               | 11         |
|    |      | 3.2.4 Technical Data                                                                                                      | 12         |
|    |      | 3.2.5. Sample Requirements                                                                                                | 13         |
|    | 2 2  | Work Sequence of THz Spectroscopy                                                                                         | 13         |
|    | 3.J. | Extraction of the Dielectric Function                                                                                     | 15<br>15   |
|    | 0.4. | 3.4.1 Stoody State Measurements                                                                                           | 15<br>15   |
|    |      | 3.4.2 Pump Probe Measurements                                                                                             | 15<br>15   |
|    |      | 5.4.2. I ump-1100e measurements                                                                                           | 10         |
| 4. | Grap | ohite: Strongly Coupled Optical Phonons in Action 4                                                                       | 7          |
|    | 4.1. | Motivation                                                                                                                | 17         |
|    | 4.2. | General Properties                                                                                                        | 18         |
|    |      | 4.2.1. Highly Oriented Pyrolytic Graphite                                                                                 | 19         |
|    | 4.3. | Electronic Structure                                                                                                      | 19         |
|    |      | 4.3.1. Graphene: Tight-Binding Model                                                                                      | <b>j</b> 0 |
|    |      | 4.3.2. Slonczewski-Weiss-McClure Model                                                                                    | 51         |
|    | 4.4. | Phonons and Their Coupling to Electrons                                                                                   | 63         |
|    | 4.5. | Optical Properties                                                                                                        | <b>j</b> 4 |
|    | 4.6. | Experimental and Technical Details                                                                                        | 55         |
|    |      | 4.6.1. Sample Preparation                                                                                                 | 55         |
|    |      | 4.6.2. Sample Pumping and Probing                                                                                         | 6          |
|    |      | 4.6.3. Data Analysis                                                                                                      | 57         |
|    | 4.7. | Results: Unexcited Sample                                                                                                 | <b>j</b> 9 |
|    |      | 4.7.1. Dielectric Function Between 1 and 3 THz                                                                            | 59         |
|    |      | 4.7.2. Dielectric Function Between 8 and 27 THz                                                                           | <i>i</i> 0 |
|    | 4.8. | Results: Excited sample                                                                                                   | 52         |
|    |      | 4.8.1. Raw Data                                                                                                           | 52         |
|    |      | 4.8.2. Dynamics of the Dielectric Function and Model Fits                                                                 | 53         |
|    |      | 4.8.3. Plasma-Frequency Decay: Consistency Check 6                                                                        | 55         |
|    |      | 4.8.4. Temperature Decay: Ultrafast Generation of Few Optical Phonon                                                      |            |
|    |      | $Modes \dots \dots$ | 56         |
|    |      | 4.8.5. Drude Scattering Rate                                                                                              | 58         |
|    | 4.9. | Conclusion and Outlook                                                                                                    | ;9         |

| 71                                                                             |
|--------------------------------------------------------------------------------|
| 71                                                                             |
| 72                                                                             |
| 72                                                                             |
| 74                                                                             |
| 74                                                                             |
| 75                                                                             |
| 76                                                                             |
| 76                                                                             |
| 77                                                                             |
| 79                                                                             |
| 79                                                                             |
| 80                                                                             |
| 81                                                                             |
| 84                                                                             |
| 85                                                                             |
| 85                                                                             |
| 87                                                                             |
| 90                                                                             |
| 90                                                                             |
| 91                                                                             |
| 02                                                                             |
| 93                                                                             |
| 93                                                                             |
| 94                                                                             |
| 90                                                                             |
| 90                                                                             |
| 97                                                                             |
| 97                                                                             |
| 11.7                                                                           |
| 97                                                                             |
| 97<br>99<br>102                                                                |
| 97<br>99<br>102                                                                |
| 97<br>99<br>102<br>103                                                         |
| 97<br>99<br>102<br>103<br>104                                                  |
| $97 \\ 99 \\ 102 \\ 103 \\ 104 \\ 105 \\ 107$                                  |
| $97 \\ 99 \\ 102 \\ 103 \\ 104 \\ 105 \\ 107 \\ 108 $                          |
| 97<br>99<br>102<br>103<br>104<br>105<br>107<br>108                             |
| 97<br>99<br>102<br>103<br>104<br>105<br>107<br>108<br>110                      |
| 9799102103104105107108110111                                                   |
| 97<br>99<br>102<br>103<br>104<br>105<br>107<br>108<br>110<br>111<br><b>113</b> |
|                                                                                |

| B. Mathematical Definitions and Theorems                                                                                                                                                                                         | 119                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <ul> <li>C. Details of Numerical Calculations for Graphite</li> <li>C.1. Direct Optical Transitions in Graphite</li> <li>C.2. 2-Temperature Model for Graphite</li> <li>C.3. Indirect Optical Transitions in Graphite</li> </ul> | <b>121</b><br>121<br>121<br>123 |
| Bibliography                                                                                                                                                                                                                     |                                 |
| Publications                                                                                                                                                                                                                     |                                 |
| Deutsche Kurzfassung                                                                                                                                                                                                             |                                 |
| Akademischer Lebenslauf                                                                                                                                                                                                          |                                 |
| Danksagung                                                                                                                                                                                                                       |                                 |