dc.contributor.author
Wang, Yuwei
dc.contributor.author
Lian, Bin
dc.contributor.author
Zhang, Haohui
dc.contributor.author
Zhong, Yuanke
dc.contributor.author
He, Jie
dc.contributor.author
Wu, Fashuai
dc.contributor.author
Reinert, Knut
dc.contributor.author
Shang, Xuequn
dc.contributor.author
Yang, Hui
dc.contributor.author
Hu, Jialu
dc.date.accessioned
2023-05-25T05:57:10Z
dc.date.available
2023-05-25T05:57:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39548
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39266
dc.description.abstract
Motivation
Single-cell multimodal assays allow us to simultaneously measure two different molecular features of the same cell, enabling new insights into cellular heterogeneity, cell development and diseases. However, most existing methods suffer from inaccurate dimensionality reduction for the joint-modality data, hindering their discovery of novel or rare cell subpopulations.
Results
Here, we present VIMCCA, a computational framework based on variational-assisted multi-view canonical correlation analysis to integrate paired multimodal single-cell data. Our statistical model uses a common latent variable to interpret the common source of variances in two different data modalities. Our approach jointly learns an inference model and two modality-specific non-linear models by leveraging variational inference and deep learning. We perform VIMCCA and compare it with 10 existing state-of-the-art algorithms on four paired multi-modal datasets sequenced by different protocols. Results demonstrate that VIMCCA facilitates integrating various types of joint-modality data, thus leading to more reliable and accurate downstream analysis. VIMCCA improves our ability to identify novel or rare cell subtypes compared to existing widely used methods. Besides, it can also facilitate inferring cell lineage based on joint-modality profiles.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
cellular heterogeneity
en
dc.subject
cell development
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
A multi-view latent variable model reveals cellular heterogeneity in complex tissues for paired multimodal single-cell data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
btad005
dcterms.bibliographicCitation.doi
10.1093/bioinformatics/btad005
dcterms.bibliographicCitation.journaltitle
Bioinformatics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
39
dcterms.bibliographicCitation.url
https://doi.org/10.1093/bioinformatics/btad005
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1367-4811
refubium.resourceType.provider
WoS-Alert