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Abstract

Motivation: Single-cell multimodal assays allow us to simultaneously measure two different molecular features of
the same cell, enabling new insights into cellular heterogeneity, cell development and diseases. However, most
existing methods suffer from inaccurate dimensionality reduction for the joint-modality data, hindering their discov-
ery of novel or rare cell subpopulations.

Results: Here, we present VIMCCA, a computational framework based on variational-assisted multi-view canonical
correlation analysis to integrate paired multimodal single-cell data. Our statistical model uses a common latent vari-
able to interpret the common source of variances in two different data modalities. Our approach jointly learns an in-
ference model and two modality-specific non-linear models by leveraging variational inference and deep learning.
We perform VIMCCA and compare it with 10 existing state-of-the-art algorithms on four paired multi-modal datasets
sequenced by different protocols. Results demonstrate that VIMCCA facilitates integrating various types of joint-
modality data, thus leading to more reliable and accurate downstream analysis. VIMCCA improves our ability to
identify novel or rare cell subtypes compared to existing widely used methods. Besides, it can also facilitate inferring
cell lineage based on joint-modality profiles.

Availability and implementation: The VIMCCA algorithm has been implemented in our toolkit package scbean
(�0.5.0), and its code has been archived at https://github.com/jhu99/scbean under MIT license.

Contact: jhu@nwpu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Thanks to advances in single-cell sequencing technologies, we can
quantitatively characterize gene expression (Tang et al., 2009),
transposase-accessible chromatin (Buenrostro et al., 2015), methyla-
tion (Luo et al., 2018) and other modalities (Nagano et al., 2013) at
single-cell resolution. Due to their high-throughput and high-
resolution properties, these fast-growing technologies have attracted
ever-increasing interest over the past decade. Enormous single-cell
datasets have been generated across tissues, organs and species,
which include, but are not limited to, HCA (Regev et al., 2017),
MCA (Han et al., 2018), single-cell atlas of chromatin accessibility

in both human (Zhang et al., 2021) and mouse (Cusanovich et al.,
2018). These comprehensive datasets, along with many computa-
tional and statistical single-cell analysis tools (Hu et al., 2021a, b),
have significantly facilitated the understanding of cellular heterogen-
eity (Kiselev et al., 2019), cell development (Treutlein et al., 2014),
coding and non-coding genetic variants associated with traits
(Poirion et al., 2018) and diseases (Chung et al., 2017; Mathys
et al., 2019). However, these single-mode assays can potentially lose
biological signals due to their modality-specific technical noises.
Data from each modality provide a unique view of cellular biology,
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but each has its strengths and weaknesses. For example, sub-cell
types of T cells are difficult to be separated by profiling RNA alone
(Mereu et al., 2020). Thus, some recent cutting-edge single-cell tech-
nologies [e.g. CITE-seq (Stoeckius et al., 2017), SNARE-seq (Chen
et al., 2019), 10� multiome, scNMT-seq (Clark et al., 2018) and
sci-CAR (Cao et al., 2018)] have been developed to simultaneously
measure two or more data modalities from the same cells, and some
can even retain spatial cellular context (Moffitt et al., 2016;
Sylwestrak et al., 2016). Although these multimodal single-cell tech-
nologies provide invaluable opportunities to interrogate cells from
multiple modalities, integrating this new data is still challenging due
to the need to infer a common source of variations from the different
modalities (Miao et al., 2021). Thus, it is increasingly in demand to
develop effective integration methods that can accurately define
detailed cellular maps on multi-modality data of diverse tissues and
facilitate integrated analyses to uncover cellular heterogeneity, func-
tional regulator and cell state transition in normal and pathological
contexts.

Existing integration methods for multi-modal data can be
grouped into two categories by the types of input data: methods for
unpaired data and methods for paired data. Many methods have
been developed for integrating unpaired data across modalities,
which mainly focused on transferring cell type annotation of a refer-
ence scRNA-seq data onto cells of another modality, including
Seurat v3 (Stuart et al., 2019), LIGER (Welch et al., 2019) and its
updated version iNMF (Gao et al., 2021), VIPCCA (Hu et al.,
2021b) and other methods based on variational inference (Hu et al.,
2021a). With the emergence of the joint-modality platform, there is
a critical need for a novel computational tool to integrate paired
multimodal omics data simultaneously measured in the same cells.
To do so, a pioneering tool, Seurat v4 (Hao et al., 2021) was pro-
posed to integrate two modality-specific graphs into one single
graph using a strategy of weighted-nearest neighbor (WNN), which
calculates cell-specific modality weights for each cell in each modal-
ity and determines its relative information content for each cell. A
statistical framework MOFAþ (Argelaguet et al., 2020) was devel-
oped to infer latent factors and associated feature weight matrices
based on variational inference techniques and group-wise automatic
relevance determination (ARD), thus enabling simultaneous integra-
tion of multiple modalities and sample groups. More recent methods
include variants of variational autoencoder (VAE) [e.g. Cobolt
(Gong et al., 2021), scVAE (Grønbech et al., 2020), scVI (Lopez
et al., 2018), peakVI (Ashuach et al., 2022), scMVAE (Zuo and
Chen, 2021), scMM (Minoura et al., 2021) and totalVI (Gayoso
et al., 2021)] that learn a non-linear joint embedding through a
multimodal encoder model and BABEL (Wu et al., 2021) that use
two encoder models to project either RNA or ATAC profiles into a
shared latent representation, decoder models to infer observed phe-
notypes from the latent representation. More details about existing
methods are provided in Supplementary Table S1 and
Supplementary Text.

However, most existing methods have a specific weakness that
prevents them from analyzing and interpreting cellular heterogeneity
based on the joint-modality data. Specifically, Seurat v4 infers a sin-
gle integrated graph to obtain a common definition of cellular state
without a statistical model, thus missing a chance of accounting for
the source of variations within each modality. Methods with sophis-
ticated parametric models such as MOFAþ are challenging to be
scaled up to large-size data. Although current deep-learning meth-
ods such as Cobolt and totalVI can be scaled up to large-size data,
they have the potential to mask the presence of rare or small subpo-
pulations of cells due to the inaccurate prediction of low-
dimensional cell representations. BABEL (Wu et al., 2021) is unable
to directly integrate multi-modal data for downstream analysis such
as joint-clustering analysis, while it can use joint-modality data to
predict one single modality into another modality. The variants of
deep generative models such as scMVAE, scMM and totalVI take
features of each modality as input to learn joint latent representa-
tion. Many successful applications demonstrate their abilities to fa-
cilitate integrating single-cell multi-omics data. However, most of
the above methods focus on integrating only one type of multi-

modal data. For example, Seurat v4 and totalVI were mainly
designed to integrate CITE-seq that jointly measures gene expression
and a few hundred antibodies for the same cells.

To overcome these challenges, we propose a unified computa-
tional framework, VIMCCA, based on variational inference and

multi-view subspace learning to understand cell identity and func-
tion from paired multi-modal omics. In contrast to existing algo-

rithms, we assume a multi-view latent variable Z exists to interpret
the source of variations within each modality. Our model projected
the single latent factor Z into multi-modal observation spaces by

modality-specific non-linear functions.

2 Materials and methods

2.1 A multi-view latent variable model
Suppose, we have a joint-modality data D ¼ fX;Yg, where X 2
R

n�p represents a gene expression matrix of n cells measured on p
genes, and Y 2 R

n�q represents a matrix of the same n cells meas-

ured on either surface proteins or chromatin-accessible region. Both
X and Y are scaled to unit variance and zero mean by Scanpy (Wolf

et al., 2018). We assume that the observed data {X, Y} can be gener-
ated from a latent factor Z with two modality-specific non-linear
functions. The lower-dimensional matrix Z of dimensionality n by d
is supposed to reflect the actual biological states of cells. It could fa-
cilitate many downstream analyses such as identifying cell subpopu-
lations and trajectory inference, clustering and visualization. To

estimate Z, we model the joint-modality data into a non-linear
model that transforms a latent variable z into the two observed

spaces. Mathematically, it can be described by a statistical model as
written below:

xi ¼ fxðzi; hxÞ þ �x (1)

yi ¼ fyðzi; hyÞ þ �y (2)

zi � Nð0; IdÞ �x � Nð0;r2IpÞ �y � Nð0; r2IqÞ (3)

where xi and yi are the joint-modality data of the ith cell; fx and fy
are two non-linear regression functions that transform zi from a la-
tent d-dimensional space into two observed spaces, respectively; hx

and hy are parameters which can be estimated by fitting the given

data; and �x and �y are the residual errors that follow multivariate
Gaussian distribution. We assume that the prior distribution of the

latent variable zi is a standard multivariate normal distribution
Nð0; IdÞ. Under this assumption, the latent representation vector of
the n cells all reside in the same lower-dimensional space. The non-

linear function fxð�Þ and fyð�Þ are constructed by using two genera-
tive deep neural network structures (i.e. decoder). The decoders take
zi as input and output reconstructed matrices xi and yi, respectively.

In the decoder fxð�Þ, zi is inputted into d-dimensional layer, which is
then connected to the output p-dimensional layer with several inter-

mediate layers in the form of d! 32! 64! 128! p. The struc-
ture of fyð�Þ is the same as fxð�Þ except for its q-dimensional output
layer. All intermediate layers are fully connected through a

BatchNormalization layer (with centering but no scaling), a Relu ac-
tivation layer and a Dropout layer (rate¼0.05). The dropout tech-

nique can prevent over-fitting and provide a way of efficiently
combining exponentially many different neural network architec-
tures. It’s noticed that the strategy of using BatchNormalization and

Dropout layers simultaneously in our networks do not lead to worse
performance in our data analysis (Supplementary Figs S1 and S2) al-

though they do make some modern networks perform worse in
some cases (Li et al., 2019). In the above model, the non-linear func-
tion fxð�Þ and fyð�Þ generalize the standard probabilistic CCA model

(Bach and Jordan, 2005) towards modeling both non-linear and the
modality-specific variances, thus allowing us to learn complex fea-

tures of the joint-modality data.
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2.2 The variational inference algorithm
As described in Equations (1–3), we assume that the two observed
modality data X and Y are generated by some random process
involving a latent variable z. However, the true parameters h� ¼
ðhx; hy; rÞ are unknown to us. Furthermore, the marginal likelihood
phðX;YÞ is intractable because of the non-linearity of f ð�Þ. Thus, to
effectively estimate the posterior of the latent variables z based on
the observed matrice X and Y, we develop a variational inference al-
gorithm that uses a variational distribution q/ðzjXÞ to approximate-
ly estimate the posterior phðX;YjzÞ. Specifically, the marginal data
log-likelihood can be written as

log phðX;YÞ ¼
Xn

i¼1

log phðxi; yiÞ (4)

with each term expressed as

log phðxi; yiÞ ¼ log

ð
phðxi; yijziÞphðziÞdzi: (5)

The above integration can be solved analytically when fx and fy
are linear functions as in the standard probabilistic canonical correl-
ation analysis [PCCA, (Bach and Jordan, 2005)]. However, when
we use deep neural networks to transform zi to xi and yi, the likeli-
hood does not have an analytic form. Thus, using the technique of
variational distribution q/ðzijxiÞ (Kingma and Welling, 2014), we
can re-express Equation (5) as

log phðxi; yiÞ ¼
Ð
ðlog phðxi; yiÞÞq/ðzijxiÞdzi

� Eq/ðzi jxiÞ log
phðxi; yi; ziÞ

q/ðzijxiÞ

" #

� Lðh;/; xi; yiÞ:

(6)

Now, the maximization of the marginal log-likelihood has been
transformed into a problem of maximizing its Evidence Lower
Bound (ELBO) Lðh;/; xi; yiÞ. The ELBO can be rewritten as

Lðh;/; xi; yiÞ

¼
Ð

q/ðzijxiÞ log
pðziÞ

q/ðzijxiÞ
þ log phðxijziÞ þ log phðyijziÞ

 !
dzi

¼ �DKLðq/ðzijxiÞjjpðziÞÞ þ Eq/ðzi jxiÞ½log phðxijziÞ þ log phðyijziÞ	:
(7)

From Equation (7), we can see that ELBO has two components.
The first term is the KL divergence between the variational distribu-
tion and the prior phðziÞ, which acts as a KL regularizer. The second
term is an expected negative reconstruction error of xi and yi. To
avoid the construction error being too strong or too weak, we adjust
the ELBO via a hyperparameter k in the form as

Lðh;/; xi; yiÞ

¼ �DKLðq/ðzijxiÞjjpðziÞÞ

þkEq/ðzi jxiÞ½log phðxijziÞ þ log phðyijziÞ	:
(8)

To estimate the lower bound Lðh;/; xi; yiÞ, we use the SGVB es-
timator (Kingma and Welling, 2013), which applies Monte Carlo
estimates to the variational lower bound. More algorithmic details
about the computation of the KL term and the construction error in
Equation (8) are described in the Supplementary Text.

2.3 103 Multiome RNA1ATAC data on human PBMCs
Our first real dataset was obtained by 10� Multiome from human
peripheral blood mononuclear cells (PBMCs) of a healthy donor
aged 25. It can be freely downloaded from the 10� Genomics
single-cell portal (https://support.10xgenomics.com/single-cell-multi
ome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k), which
consists of 10 142 cells (after filtration) with common measurements
on 36 601 genes and 106 056 open chromatin peaks. First, we used
a function pp.filter_genes (with min_cells¼1) in Scanpy (v1.9.1)
(Wolf et al., 2018) to filter low-quality genes and peaks. The count

matrices of the remaining genes and peaks were processed with log
transformation. A pseudo count of 1 was added for all elements of
the count matrices to avoid taking the logarithm of zeros. Then, the
log -normalized data were scaled with a function pp.scale in Scanpy
with the default parameter setting. To validate the cell type assign-
ment, we created a pseudo-bulk RNA-seq profile by pooling cells of
each assigned cell type. We then compared the pseudo-bulk RNA-
seq data with the bulk RNA-seq data of human immune cell types in
PBMCs (Memory B, Naive B, CD14 Mono, CD16 Mono, CD4
Naive, CD4 TEM, CD8 Naive, CD8 TEM, gdT, MAIT, NK, pDC,
Plasma and Treg), which were downloaded from the GEO website
[ID: GSE94820 (Villani et al., 2017). For each cell type, we com-
puted the Pearson correlation coefficients of gene expression of a set
of 60 marker genes between the pseudo-bulk RNA-seq data and the
bulk RNA-seq data.

2.4 103 single-cell immune profiling data on human

PBMCs
Our second application downloaded a single-cell immune profiling
dataset of human PBMCs from the 10� Genomics website (https://
support.10xgenomics.com), which measured 33 538 genes and 17
cell surface proteins on 8258 cells simultaneously. We used a func-
tion filter_genes (min_cells¼1) in Scanpy for the gene expression
count data to filter low-quality genes. After the filtration, the count
matrices of the remaining genes and the 17 proteins were further
processed with log-normalization and pp.scale.

2.5 CITE-seq data on human bone marrow
In the third application, we applied VIMCCA to a CITE-seq dataset
downloaded from the GEO repository (ID: GSE128639) (Stuart
et al., 2019). These data consist of 30 672 cells with common meas-
urements on 17 009 genes and 25 cell surface proteins (antibodies).
For the scRNA-seq data, we used Scanpy to normalize the expres-
sion count data following the standard tutorial of Scanpy. To filter
the low-quality data, we first used pp.filter_genes to filter genes
with the parameter min_cells¼10, which means that genes
expressed in <10 cells will be removed. We then performed sequen-
tially count_per_million (CPM), log-transform, and pp.scale on the
RNA count matrix. After the above preprocessing, the gene expres-
sion count matrix becomes smooth and follows a Gaussian distribu-
tion with unit variance and zero means. We also performed the
above preprocessing for the ADT count data without filtering any
proteins.

2.6 Fetal forebrain and adult forebrain dataset of mouse
In this application, we use a mouse’s fetal forebrain and adult fore-
brain dataset with cell development stage information. The dataset
includes 29 386 genes, 25 845 cells and 2 637 315 open chromatin
peaks and can be obtained from GEO (GSE130399). For single-
model analysis, we first filter the genes according to the condition
that the non-zero count in cells is greater than 3. Then, we use the
NormalizeData function of Seurat for standardization with
method¼LogNormalize and scale.factor¼10 000. We use the
ScaleData function for the PCA method to scale the data to unit
variance and zero mean.

3 Results

3.1 Methods overview
To broaden our understanding of cell heterogeneity in complex tis-
sues and organs, we developed an efficient computational tool that
can analyze paired single-cell multimodal data (Fig. 1A) to define
cell types jointly. As shown in Figure 1B, we assume that a standard
latent random variable can account for variances of two modality
data in the observed space. Then, we incorporate two modality-
specific nonlinear functions into the commonly used canonical cor-
relation analysis (CCA) and learn a multi-view latent variable model
via variational optimization and multilayer neural network

VIMCCA 3
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backpropagation for approximate inference (Fig. 1C, details in
Section 2). Several features distinguish our approach from existing
methods for analyzing single-cell joint-modality data, which include
(i) its flexibility in learning complex models, thus allowing us to dir-
ectly integrate raw peak counts of scATAC-seq and gene expression
of scRNA-seq without converting peak counts into gene activity ma-
trix; (ii) its ability to use only transcriptomics data to approximately
infer the posterior distribution of the latent variable; (iii) its ability
to integrate not only single-cell transcriptomics data and ATAC-seq
data but also single-cell transcriptomics data and antibodies. We de-
velop a variational approximation algorithm for inference of the
posterior of a latent variable z and employ minibatch-based stochas-
tic gradient descent during the training phase, thus allowing the
model to be highly computationally scalable. Since our method is
designed based on multi-view learning and variational inference, we
refer to our method as variational inference-assisted multi-view
CCA (VIMCCA). VIMCCA is freely available at https://github.com/
jhu99/scbean (v0.5.0).

3.2 Integration of a 103 multiome dataset by VIMCCA

reveals three new sub-cell types in human PBMCs
To examine the effectiveness of VIMCCA in integrating multimodal
data, we first apply it to a dataset of 10 412 paired human PBMC
profiles generated by the 10� Genomics Multiome ATACþRNA
kit. All cells are simultaneously measured on 36 601 genes and

106 056 open chromatin peaks. Our goal is to obtain an optimal
estimation of the latent variable z that can represent the hidden
cellular states and sub-classes.

To evaluate the performance of VIMCCA and other existing
state-of-the-art methods, PCA, scVAE and scVI are performed on
only the gene expression data, PCA and PeakVI on only the ATAC
data, scMVAE, Cobolt and VIMCCA on both of the two modalities
to jointly learn the cell states. UMAP (Becht et al., 2019) is used to
visualize the cell representation in the reduced dimensional space.
From Figure 2A–H, we can see that all compared methods are un-
able to separate CD4þ T Effector Memory (CD4 TEM) cells and
regulatory T cells (Treg), except for PCA (ATAC) and VIMCCA
(RNAþATAC), and Basophil cells cannot be distinguished from
CD14þ Monocyte (CD14 Mono) cells by PCA (ATAC), scVAE
(RNA), scVI (RNA) and Cobolt (RNAþATAC). After the integra-
tion of the two complementary modalities by performing VIMCCA,
all cells can be visually recognized in the UMAP visualization
(Fig. 2H).

To evaluate how well our method can define cell states based on
both modalities, clustering is performed on the integrated data of
VIMCCA using the Leiden algorithm, and 42 clusters are identified
(Supplementary Fig. S3). Cell type labels are examined manually
based on the prior knowledge of marker features (Thul et al., 2017;
Uhlen et al., 2019) (details in Supplementary Table S2). As shown in
Figure 3A, all marker genes show significant quantitative changes in
expression levels between one representative group and the resting

Fig. 1. An schematic overview of VIMCCA. (A) Input data obtained by single-cell multimodal sequencing technologies are jointly measured on two modalities, such as RNA,

antibody or accessibility of chromatin regions. (B) A diagram of the multi-view latent variable model of VIMCCA. (C) VIMCCA fits a joint-modality data {X, Y} into an

inference model (left) and two non-linearity models (right) using deep neural networks
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cell type groups (more details in Supplementary Fig. S4). It demon-
strates that cluster-based cell-type labels identified by VIMCCA are
consistent with the gene expression patterns of the previously
reported marker genes. More importantly, three rare sub-cell types,
including Basophil cells, CD4 TSCM cells and pre-B cells, have been
identified by VIMCCA. In Seurat’s annotation, most Basophil cells
are assigned to CD14 Mono and CD16 Mono, CD4 TSCM cells to
CD4 TCM, pre-B cells to B Memory and B Naive. However, as
shown in Figure 3B–D, the expression of known marker genes
including RAB31, MTRNR2L2, LEF1, STAT3 and CD44 (Ding
et al., 2016; Horst et al., 1990; Thul et al., 2017; Uhlen et al., 2019)
in these newly discovered cell types are significantly higher than the
expression in the original cell types.

We next perform a comprehensive comparison for pairs of cell
types defined by VIMCCA and Seurat v4 in terms of overlapped
cells and Jaccard similarity. As shown in Figure 4A, the two sets of
cell labels, to a great extent, are consistent with each other, although
with some differences in several small cellular groups, such as Treg,
gdT and Memory B. A more clear visualization in a Sankey diagram
(Fig. 4B) shows the flow direction from labels in VIMCCA to their
cell type labels in Seurat v4. To quantitatively measure the accuracy
of cell type labels obtained by VIMCCA and Seurat v4, we collect
bulk RNA-seq data (Villani et al., 2017) for 14 overlapped cell
types, including Memory B, Naive B, CD14 Mono, CD16 Mono,
CD4 Naive, CD4 TEM, CD8 Naive, CD8 TEM, gdT, MAIT, NK,
pDC, Plasma and Treg, and compute the Pearson correlation

Fig. 2. Performance comparison in the lower-dimensional space of 10� multiome RNAþATAC data. (A–E) UMAP visualization of cell representations obtained from either

the gene expression data or the ATAC-seq data by PCA, scVAE, scVI and PeakVI. (F–H) UMAP visualization of cell representations obtained from both of the two modalities

by scMVAE, Cobolt and VIMCCA
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between gene expression in each scRNA-seq cellular population and
its corresponding cellular group in bulk RNA-seq data. As shown in
Figure 4C, cell type labels of VIMCCA are more accurate than that
of Seurat v4 in almost all the 14 cellular populations in terms of
Pearson correlation. Overall, VIMCCA can capture mutually exclu-
sive characteristics of multi-modal data, thus leading to a more reli-
able and accurate cell type annotation for human PBMCs.

3.3 VIMCCA enables the integration of joint-modality

data with both gene expression and cell surface

proteins
Our second application integrates joint-modality data obtained by
10� single-cell immune profiling. To verify the effectiveness of our
methods in integrating the two complementary modalities, we

Fig. 3. Gene expression patterns of marker genes in the 10� multiome data of human PBMCs. (A) A heatmap of cell-type specific marker genes of each cell type. (B–D)

Expression patterns of marker genes in new sub-populations, such as Basophil, CD4 TSCM and pre-B cells

6 Y.Wang et al.
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consider the task of integrating two data modalities of 8258 periph-
eral blood mononuclear cells (PBMCs) measured on 33 538 genes
and 17 cell surface proteins (i.e. antibodies). For a fair comparison,
PCA, scVAE and scVI are performed on the gene expression data,
and PCA on the protein data, VIMCCA along with Seurat v4,
TotalVI and CiteFuse (Kim et al., 2020a) on the two complementary
modalities to jointly learn the cell representation in the reduced di-
mensional space. Following the previous application, we use UMAP

to visualize the cell representations obtained by each method
(Fig. 5A–H). Cluster-based cell-type labels are manually assigned to
cells based on a list of previously reported marker genes and differ-
ential gene expression analysis (details in Fig. 6A, D–G,
Supplementary Table S3). By doing so, a total of 21 cellular popula-
tions have been identified. The UMAP visualization demonstrates
that igGþ CD14 Monocyte (CD14 Mono igG) cells and CD8 Naı̈ve
cells are difficult to be identified by using only gene expression data

Fig. 4. Comparison of cell-type labels annotated by Seurat v4 and VIMCCA. (A) Comparison of each pair of cellular subpopulations identified by Seurat v4 and VIMCCA. (B)

A Sankey diagram depicts a flow from the cell-type labels annotated by VIMCCA to that by Seurat. (C) Pearson correlation between the pseudo-bulk RNA-seq profile and the

bulk RNA-seq profile
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(Fig. 5A, C and D), and Basophil cells, Plasma cells and pDC cells
cannot be identified by using only antibodies (Fig. 5B). The results
also show that Seurat, totalVI and CiteFuse fail to distinguish inter-
mediate Monocyte (Inte Mono) and CD4 TEM RAþ from CD14
Mono and CD4 TEM ROþ cells, respectively (Fig. 5E–G). In the
results of totalVI, CD8 Naı̈ve cells are divided into three distinct
groups, and Treg cells are mixed with CD4 Naı̈ve cells (Fig. 5E). In
contrast, all these cell types can be successfully identified after the
integration of VIMCCA (Fig. 5H).

We next evaluate algorithm performance with an adjusted rand
index (ARI), which assesses how well cells can be correctly clustered
into the 21 different cellular populations. As shown in Figure 6B,
VIMCCA outperforms other compared algorithms with the highest

ARI value (0.42), which is followed by CiteFuse (0.39), Seurat
(0.36), totalVI (0.35) and DEMOC (0.18). Additionally, we test the
computational efficiency and scalability of the compared methods
on six datasets with 3000, 6000, 9000, 12 000, 15 000 and 18 000
cells, respectively. It shows that VIMCCA, totalVI and Seurat can
complete all the integration tasks within about 10 min (Fig. 6C);
CiteFuse and DEMOC need more than 24 h to integrate 15 000 cells
(Supplementary Table S5). The fast speed of VIMCCA and totalVI
majorly benefit from using the neural network structures, and a
strategy of mini-batch gradient descent in the deep learning model.
More importantly, four new sub-cell types [i.e. IgGþ CD14 Mono
(Calverley et al., 2004), CD45RAþ CD14 Mono (Rothe et al.,
1996), CD45ROþ CD4 TEM (Richards et al., 1997), CD3þ B

Fig. 5. Performance comparison in the lower-dimensional space of 10� single-cell immune profiling of human PBMCs. (A–D) UMAP visualization of cell representations

obtained from either the gene expression data or the cell surface protein data by PCA, scVAE and scVI. (E–H) UMAP visualization of cell representations obtained from both

of the two modalities by Seurat, totalVI, CiteFuse and VIMCCA
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Fig. 6. Expression patterns of marker genes and antibodies of human PBMCs. (A) A heatmap of the expression of cell type-specific marker genes. (B) Comparison of ARI of

clustering results obtained by VIMCCA, Seurat v4, totalVI, CiteFuse and DEMOC. (C) Comparison of running time of VIMCCA, Seurat v4 and totalVI on six datasets with

3000, 6000, 9000, 12 000, 15 000 and 18 000 cells, respectively. (D) The expression levels of IgG2a and IgG2b in IgGþ CD 14 Monocyte cells and CD14 Monocyte cells. (E)

The expression levels of CD45RA in CD45RAþ CD14 Monocyte cells and CD14 Monocyte cells. (F) The expression levels of CD45RA and IgG2b in CD45RAþ CD4 TEM

cells and ROþ CD4 TEM cells. (G) The expression levels of CD3E and CD3G in CD3þ B cells, Naı̈ve B cells and memory B cells
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(Nagel et al., 2014)] have been discovered by VIMCCA, which can
be further verified by the expression patterns of several known
marker genes including IgG2a, IgG2b, IgG1, CD45RA, CD3E and
CD3G (Fig. 6D–G). Overall, VIMCCA enables efficient integration
of joint-modality data generated by 10� single-cell immune profil-
ing, thus leading to more reliable downstream clustering analysis.

3.4 Accurate integration of CITE-seq data by VIMCCA

improves our ability to resolve cell heterogeneity of

human bone marrow cells
In our third application, we examine the task of integrating data
generated from a CITE-seq experiment (Stoeckius et al., 2017;

Stuart et al., 2019), in which 17 009 genes and a panel of 25 cell sur-
face proteins were simultaneously measured on 30 672 human bone
marrow cells. For performance comparison, we applied PCA
(RNA), PCA (Protein), scVAE (RNA), scVI (RNA), totalVI
(RNAþProtein), Seurat (RNAþProtein) and VIMCCA
(RNAþProtein) to this dataset, and cell-type labels are manually
assigned to cells based on clustering analysis and differential expres-
sion analysis. UMAP is used to visualize the cell representation
obtained by the compared methods (Fig. 7A–G), and a total of 24
cell types are identified. To do this, more than 60 cell-type-specific
marker genes are collected and curated from literature
(Supplementary Table S4), and their expression patterns are used for
cluster-based cell type annotations (Fig. 8A). Results show that CD8

Fig. 7. Integrated analyses of CITE-seq data of human bone marrow cells. (A–D) UMAP visualization of cell representations obtained from either the gene expression data or

the protein surface data by PCA, scVAE and scVI. (F, G) UMAP visualization of cell representations obtained from both of the two modalities by totalVI, Seurat and VIMCCA
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Memory 1 cannot be distinguished from CD8 Memory 2 and
Mucosa-associated invariant T (MAIT) cells by PCA (RNA), scVAE
(RNA), scVI (RNA) and totalVI (Fig. 7A, C, D and E); most existing
methods cannot distinguish granulocyte-monocyte progenitors
(GMP) cells and CD14 Monocyte 2 (CD14 Mono_2) cells from the
major CD14 Mono 1 cells (Fig. 7A–F). By taking advantage of both
the information from RNA and antibodies with a multi-view model,
VIMCCA accurately identified most of the 24 cell types, including a
rare sub-cell type CD14 Mono 2 (Fig. 7G).

We next compare the cell-type annotation of VIMCCA with that
of Seurat v4. As shown in Figure 9A and B, most of the cell type

labels predicted by VIMCCA are consistent with that predicted by
Seurat, except for red blood 1 and red blood 2, and CD14
Monocyte 2. Most red blood cells are recognized as regulatory T
cells and progenitor red blood cells, and CD14 Monocyte 2 is a rare
subpopulation newly discovered by VIMCCA. All these findings are
further verified by the expression patterns of previously reported
marker genes HBB, GYPA, LTB and CD79B (Fig. 8B and C). HBB
and GYPA are marker genes of red blood cells (Young et al., 2018).
At the same time, they show different expression patterns in these
two subtypes (Fig. 8B), indicating that these two subtypes are two
different subpopulations of red blood cells. The different expression

Fig. 8. Expression patterns of marker genes and performance evaluation based on ARI for human bone marrow cells. (A) A heatmap of expression patterns of marker genes of

each cell type. (B) The expression levels of HBB and GYPA in red blood 1 and red blood 2. (C) The LTB and CD79B expression levels in CD14 Monocyte 1 and CD14

Monocyte 2. (D) ARI index of clustering result of VIMCCA, Seurat v4 and totalVI on human bone marrow cells. (E) Robustness analysis for the hyperparameter of VIMCCA
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patterns of LTB and CD79B in CD14 Mono 1 and CD14 Mono 2
show that these cells are two subpopulations of CD14 Mono cells
(Fig. 8C). We further evaluate the performance of clustering in terms
of ARI. Results show that the clustering result of VIMCCA is

comparable to that of Seurat v4 and is superior to that of totalVI,
scVAE and scVI (Fig. 8D). In addition, we measure the robustness of
the choice of the number of latent dimensions (Fig. 8E). It demon-
strates that our clustering results are robust with respect to the

Fig. 9. Expression patterns of marker genes and performance evaluation based on ARI for human bone marrow cells. (A) Comparison of each pair of cellular subpopulations

identified by Seurat v4 and VIMCCA. (B) A Sankey diagram depicts a flow from the cell-type labels annotated by VIMCCA to that by Seurat
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dimensionality of Z. Overall, VIMCCA facilitates the integration of
CITE-seq data across gene expression data and cell surface proteins,

thus improving our ability to identify rare sub-cell types.

3.5 VIMCCA integration enables accurate trajectory

inference for the development of fetal forebrain
Trajectory inference algorithms used in the single-cell analysis are to
determine the dynamic changes of thousands of cells over time by

analyzing the single-cell multi-omics data. Its a major challenge to
develop an integration algorithm that can embed two data modal-

ities of cells in latent space while preserving cell trajectory struc-
tures. To examine the ability to support downstream trajectory
inference, we test VIMCCA, DCA, scVI, scVAE, PCA and Diffusion

map on a time-series single-cell dataset, which was collected from
25 845 samples (cells) of E12.5, E16.5 and adult mouse fetal fore-

brain (Zhu et al., 2019) on 29 386 genes and 2 637 315 open chro-
matin peaks. Note that VIMCCA leverages both two modalities to
reduce the dimensionality. After the dimension reduction, we per-

form slingshot (v1.8.0) (Street et al., 2018) on cell embeddings in
the lower dimensional space to infer pseudotime and cellular lineage
within the developing forebrain.

For a fair performance comparison, we evaluate the integration
quality of the compared algorithms in terms of the Kendall correl-
ation (s) between the inferred pseudotime and the real-time cell
states. As shown in Figure 10A, quantification supports the superior
performance of DCA, VIMCCA, and scVI in terms of the correl-
ation. Their correlation scores are 0.63, 0.62 and 0.62, respectively,
which are followed by scVAE (0.55), PCA (0.50) and Diffusion map
(0.04). UMAP visualization in Figure 10B–G demonstrates that
VIMCCA is the only algorithm that can identify three distinct clus-
ters. Cells in each cluster represent a cell state during the mouse fore-
brain development, although cells in Clusters I and II are mixed by
cells from E12.5 and E16.5 mouse forebrain (Supplementary Fig.
S6). To understand the biological role of each identified cluster, we
further provide differential expression analysis and gene set enrich-
ment analysis for each cluster. As a result, 130, 75 and 77 cluster-
specific genes are identified for Clusters I–III, respectively. Then we
perform enrichment analysis on the three gene sets in biological pro-
cess (Supplementary Fig. S7) and cellular component, respectively
(Supplementary Fig. S8). Results show that cells in Clusters I–III
play major roles in synapse organization, neuron migration and den-
drite development. Previous studies also demonstrate that newborn
neurons migrate to specific positions in the brain and extend axons
and dendrites before engaging in synapse formation during the

Fig. 10. Trajectory inference analysis for the development of mouse fetal forebrain based on the reduced dimensionality obtained by various methods. (A) The Kendall correl-

ation coefficient between the real sampling time of cells and the pseudo-time inferred by the eight methods. (B–I) Comparison of the trajectory inferred by VIMCCA, DCA,

scVI, scVAE, PCA, t-SNE, UMAP and diffusion map
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mouse forebrain development (Südhof, 2021, 2018). Overall, we
can conclude that VIMCCA facilitates accurate trajectory inference
by integrating time-series multi-modal single-cell data.

4 Discussion

Our method VIMCCA uses a multiview non-linear CCA model to
jointly learn the common cell embeddings from paired multimodal
single-cell data. Seurat v4 performs a dimensional reduction of each
modality separately and merges two modality-specific distance
matrices into one single distance matrix via weighted-nearest neigh-
bor (WNN). Through our manually annotated cell labels and careful
and comprehensive evaluation, we demonstrate that VIMCCA facil-
itates the integration of various types of multimodal data, thus lead-
ing to accurate and robust downstream analysis, such as the
identification of new cellular subpopulations and trajectory infer-
ence. However, although these cell labels are verified by the expres-
sion patterns of previously reported markers, we cannot guarantee
that these labels are 100% correct, so they may slightly affect the
results. Further, we take the single-cell transcriptomics data as the
encoder’s input to search for a Gaussian approximation of the pos-
terior distribution of the latent variable in all three real data applica-
tions. Considering another type of modality data in the input layer
may also affect the integration quality.

5 Conclusions

Advanced single-cell multimodal sequencing technologies provide
new opportunities to understand cell heterogeneity from multiple
modalities. However, most existing methods may encounter limita-
tions while applied to various multimodal datasets, which conse-
quently limit the quality of downstream analyses. It poses novel
computational challenges in integrating two or more distinct modal-
ities from single-cell sequencing.

To provide potential solutions to improve the integration qual-
ity, we propose a unified computational framework, VIMCCA,
based on a combination of variational inference and a multi-view
latent model, which can learn the cell representations in the lower-
dimensional space from paired multi-modal omics. To verify the
effectiveness and stability of VIMCCA, we apply VIMCCA and sev-
eral state-of-the-art methods to four real paired multi-modal data-
sets generated by four different technologies or protocols. Results
suggest that VIMCCA can improve our ability to integrate multi-
modal data by taking advantage of the complementary information,
thus leading to more accurate identification of cell types and rare
sub-cell types. Compared with existing methods, VIMCCA’s contri-
butions are 4-fold: (i) the unified computational framework based
on multi-view non-linear CCA models enables VIMCCA to account
for the common source of variations for single-cell multi-modal
data; (ii) the non-linearity modeling enables VIMCCA to capture
complex data structures of various multimodal datasets, including
10� multiome, 10� single-cell immune profiling, CITE-seq data
and Paired-seq; (iii) by taking advantage of variational inference,
VIMCCA implements computationally efficient algorithms, thus
leading to more reliable, scalable and robust downstream analysis;
(iv) the multi-view non-linear CCA model enables VIMCCA to dir-
ectly learn cell representations from the peak counts of ATAC-seq
and the transcriptomics data without translating the peak counts
into the activity matrix.

We anticipate that VIMCCA will be widely used for the conjoint
analysis of various multimodal data. For example, VIMCCA can be
easily extended to integrate multimodal data measured simultan-
eously on three or more modalities. Specifically, it only requires
more modality-specific neural network layers as additional decoders
in the computational framework. It is expected to enable more ac-
curate and robust cell type definition and downstream analysis than
these sequenced from two modalities. For example, it has the poten-
tial to be used for discovering gene regulation mechanism from
omics data (Zhang et al., 2022a, b).

Like some existing single-cell analysis methods (Argelaguet
et al., 2020; Hu et al., 2021a; Xin et al., 2020), VIMCCA mainly
focuses on modeling gene expression data through a Gaussian noise
model. Modeling raw transcriptome count data using the Gaussian
model is computationally more tractable than using over-dispersed
or zero-inflated Poisson models [e.g. negative binomial, Poisson
mixture models, zero-inflated negative binomial, etc. (Sun et al.,
2017; Sun et al., 2018)].

Due to the relatively low sequencing depth of single-cell sequenc-
ing, accounting for mean and variance relationships by directly
modeling raw count data often provides additional benefits (Kim
et al., 2020b). Therefore, adopting a zero-inflated Poisson distribu-
tion to model the data of gene transcriptome modalities may further
improve the quality of the cell embedding features learned by
VIMCCA.
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