dc.contributor.author
Hubregtsen, Thomas
dc.contributor.author
Wierichs, David
dc.contributor.author
Gil-Fuster, Elies
dc.contributor.author
Derks, Peter-Jan H. S.
dc.contributor.author
Faehrmann, Paul K.
dc.contributor.author
Meyer, Johannes Jakob
dc.date.accessioned
2023-04-26T10:25:28Z
dc.date.available
2023-04-26T10:25:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39107
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38823
dc.description.abstract
Kernel methods are a cornerstone of classical machine learning. The idea of using quantum computers to compute kernels has recently attracted attention. Quantum embedding kernels (QEKs), constructed by embedding data into the Hilbert space of a quantum computer, are a particular quantum kernel technique that is particularly suitable for noisy intermediate-scale quantum devices. Unfortunately, kernel methods face three major problems: Constructing the kernel matrix has quadratic computational complexity in the number of training samples, choosing the right kernel function is nontrivial, and the effects of noise are unknown. In this work, we addressed the latter two. In particular, we introduced the notion of trainable QEKs, based on the idea of classical model optimization methods. To train the parameters of the QEK, we proposed the use of kernel-target alignment. We verified the feasibility of this method, and showed that for our experimental setup we could reduce the training error significantly. Furthermore, we investigated the effects of device and finite sampling noise, and we evaluated various mitigation techniques numerically on classical hardware. We took the best performing strategy and evaluated it on data from a real quantum processing unit. We found that using this mitigation strategy demonstrated an increased kernel matrix quality.
en
dc.format.extent
20 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Machine learning
en
dc.subject
Quantum algorithms
und
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Training quantum embedding kernels on near-term quantum computers
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
92930
dcterms.bibliographicCitation.articlenumber
042431
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.106.042431
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, Md
dcterms.bibliographicCitation.volume
106 (2022)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevA.106.042431
dcterms.rightsHolder.note
https://journals.aps.org/copyrightFAQ.html#eprint
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9926
dcterms.isPartOf.eissn
2469-9934