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Kernel methods are a cornerstone of classical machine learning. The idea of using quantum computers to
compute kernels has recently attracted attention. Quantum embedding kernels (QEKs) constructed by embed-
ding data into the Hilbert space of a quantum computer are a particular quantum kernel technique that allows
to gather insights into learning problems and that are particularly suitable for noisy intermediate-scale quan-
tum devices. In this work, we first provide an accessible introduction to quantum embedding kernels and then
analyze the practical issues arising when realizing them on a noisy near-term quantum computer. We focus on
quantum embedding kernels with variational parameters. These variational parameters are optimized for a given
dataset by increasing the kernel-target alignment, a heuristic connected to the achievable classification accuracy.
We further show under which conditions noise from device imperfections influences the predicted kernel and
provide a strategy to mitigate these detrimental effects which is tailored to quantum embedding kernels. We
also address the influence of finite sampling and derive bounds that put guarantees on the quality of the kernel
matrix. We illustrate our findings by numerical experiments and tests on actual hardware.

I. INTRODUCTION

Quantum computing promises to solve problems that are
currently intractable by exploiting the quantum nature of in-
formation. While long considered more a dream than a possi-
bility, recent efforts have succeeded in constructing quantum
devices able to perform computations intractable for classi-
cal computers [1]. This generation of quantum devices is
referred to as noisy intermediate-scale quantum (NISQ) de-
vices. Exploiting the non-classical capabilities of NISQ de-
vices to solve practically relevant problems is a rapidly grow-
ing field of research [2, 3].

Machine learning (ML) on the other hand promises to lever-
age classical computers to solve ever more complicated prob-
lems. Especially the combination of deep neural networks and
big data has led to impressive successes recently [4–6].

There exists, however, a variety of different approaches to
construct learning models that are currently outshone by the
more popular deep neural networks. Among those, kernel
methods are of particular interest as they provide a way to re-
alize machine learning models that come with strong guaran-
tees on their performance and offer a deep theoretical under-
standing that is often lacking when dealing with deep neural
networks [7].

It is no surprise that the idea of using near-term quantum
computers for machine learning – dubbed quantum machine
learning (QML) – has gained considerable traction lately [8–
10]. The most prominent approach to construct learning mod-
els using NISQ devices relies on the use of parametrized
quantum circuits (PQCs) [11–14]. Kernel methods in par-
ticular have emerged as one particular candidate to realize
QML models [15–21]. Furthermore, it was recently shown
that other types of variational quantum learning models are
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Figure 1. Quantum embedding kernels allow for classification of
datasets through the use of a support vector machine. The quality of
classification can be significantly improved by optimizing the param-
eters of the quantum embedding to increase the kernel-target align-
ment introduced in Sec. IV.

fundamentally related to quantum kernel methods [22] and
that quantum kernels enable the construction of learning prob-
lems that prove a separation between classical and quantum
machine learning [20, 23]. This work focuses specifically on
quantum embedding kernels (QEKs), a subclass of quantum
kernel methods where a PQC is used to embed datapoints into
the Hilbert space of quantum states of the underlying NISQ
device.

QEKs have certain appealing properties that make them at-
tractive for use on NISQ devices. As these devices have low
coherence times, only quantum circuits of limited depth can
be executed. As the computation of the kernel is only a small
subroutine in a more general ML technique, it does usually
not require long coherence times. Furthermore, the coher-
ence time of the NISQ device can be exploited as much as
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possible by tailoring the PQC realizing the QEK to the un-
derlying hardware. Another strong point is that noisy PQCs
still lead to well-defined QEKs as will be explained in more
detail later. Kernel methods bring with them one main dis-
advantage: just constructing the kernel matrix already entails
quadratic computational complexity in the number of training
samples. QEKs are, ultimately, a particular case of kernels,
and thus cannot but inherit this scaling, which hinders their
application in contexts of large datasets. It is also often hard
to choose the right kernel for the problem at hand.

This work formalizes and extends our submission to the
QHACK 2021 hackathon [24] hosted by Xanadu. We take
an educational approach and analyze the whole pipeline nec-
essary to make use of QEKs, including post-processing, er-
ror mitigation and optimization of variational parameters. We
hope that this work can serve as accessible introduction for in-
terested readers less familiar with QML on near-term devices.

Due to the educational nature of this work, it includes both
pre-existing and novel contributions. We propose to use the
kernel-target alignment as a cost function to train the param-
eters of the QEK to increase its performance on a particular
dataset, as shown in Fig. 1. This technique is closely re-
lated to the metric quantum learning approach proposed in
Ref. [25] for the purpose of optimizing PQCs for the encoding
of a specific dataset. Additionally, we discuss the inevitable
noise from the underlying device, proposing a mitigation strat-
egy tailored for QEKs that exploits the kernel’s definition to
infer the underlying noise levels. We also analyze the influ-
ence of finite sampling on kernel quality – an issue touched
upon in Ref. [21] – showing that the number of samples typi-
cally required to achieve an approximation of fixed precision
is of third order in the number of datapoints. We review pre-
existing strategies that can be used to alleviate the influence of
noise on the kernel matrix and propose a different one based
on a semi-definite program. We close by providing numerical
evidence that kernel training increases classification accuracy
and that the proposed noise mitigation methods improve the
quality of the obtained kernel matrix.

The rest of this work is organized as follows: In Sec. II
and III, we give an intuitive introduction to the theory of ker-
nels in general and quantum embedding kernels in particular.
Sec. IV introduces the kernel-target alignment as a measure of
fit between dataset and kernel and motivates its use as a cost
function for training quantum embedding kernels. In Sec. V,
we describe the influence of noise that effects the calculation
of kernel matrices in a realistic setting and show how it can
be mitigated using knowledge about the ideal kernel matrix.
We additionally analyze the influence of finite sampling noise
and show how regularization techniques can be used to still
ensure that the kernel matrix stays positive semidefinite even.
A pipeline for working with QEKs is suggested in Sec. VI. We
present results of simulation obtained from both classical and
quantum hardware that showcase the proposed approaches in
Sec. VII. We conclude by summarizing and discussing both
our results and outstanding questions in Sec. VIII.

Figure 2. In linear classification, a line (or in higher dimensions a
hyperplane) that separates the two classes is sought. We can define
the tilt of the line via a vector w orthogonal to it.

II. KERNEL METHODS

Kernel methods are among the cornerstones of machine
learning. To understand what a kernel method does, let us first
revisit one of the simplest methods to assign binary labels to
datapoints: linear classification.

Imagine a set of points that lie in different parts of a plane.
We want to construct a classifier that successfully predicts the
classes of the datapoints. A linear classifier corresponds to
drawing a line and assigning different labels y = ±1 repre-
senting the two classes to the opposing sides of the line, as
depicted in Fig. 2. Mathematically, this notion can be formal-
ized by introducing a vector w orthogonal to the line, thus
determining its direction. We can then assign the class label y
to a datapoint x via

y(x) = sgn(〈w,x〉+ b), (1)

where the intercept term b specifies the position of the line
in the plane. The same works for higher dimensional spaces
too, where the vector w does not just define a line, but a hy-
perplane. It is immediately clear that this method is not very
powerful, as datasets that are not separable by a hyperplane
cannot be classified with high accuracy using this scheme.

There is, however, an ingenious way to enhance the capa-
bilities of a linear classifier: One can specify a feature map
φ(x) that takes datapoints and embeds them into a larger fea-
ture space and then perform linear classification in this feature
space. In doing so, we can actually realize non-linear classi-
fication in the original space of our datapoints. This strategy
is visualized in Fig. 3. We can modify the linear classifier of
Eq. (1) to include the feature map:

y(x) = sgn(〈w′, φ(x)〉+ b), (2)

where w′ lives in the feature space corresponding to the fea-
ture map φ.

A major result in kernel theory is the representer theo-
rem [26]. It states that one can write the vectorw′ that defines
an optimal decision boundary as a sum of the embedded dat-
apoints with real coefficients: w′ =

∑
i αiφ(xi)

1. Inserting

1 The representer theorem makes mild assumptions about the way we mea-
sure “optimal”, but for our applications these are always fulfilled.
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Figure 3. A non-linear embedding can be used to enhance the ca-
pabilities of a linear classifier. Linear classification in the embed-
ding space can realize non-linear decision boundaries in the original
space.

this into Eq. (2) yields

y(x) = sgn

(∑
i

αi〈φ(xi), φ(x)〉+ b

)
. (3)

While this might not seem useful at first, notice that the above
formula only contains inner products between vectors in the
embedding space,

k(x,x′) = 〈φ(x), φ(x′)〉. (4)

We call the function k the kernel associated to the feature map
φ. But why do kernels deserve all the attention they get?

The relevant insight is that we can often find an explicit for-
mula for the kernel k without explicitly performing the feature
map φ. Consider for example the embedding

φ :

(
x1
x2

)
7→

 x21√
2x1x2
x22

 , (5)

whose associated kernel can be explicitly calculated:

k(x,x′) = 〈φ
(
x1
x2

)
, φ

(
x′1
x′2

)
〉 (6)

= x21x
′2
1 + 2x1x2x

′
1x
′
2 + x22x

′2
2 (7)

= (x1x
′
1 + x2x

′
2)2 (8)

= 〈x,x′〉2. (9)

We find that it can be obtained by simply computing the inner
product of two vectors in the initial space and squaring it. Im-
plicitly, we are however computing the inner product relative
to the embedding φ, i.e., in feature space! This is the central
property of kernel-based methods. In many relevant cases the
embedding will require a much higher cost to compute than
the kernel, while one still gains access to the larger feature
space through the kernel. This implicit use of the embedding
through its associated kernel is known as the kernel trick.

If we do not need the embedding at all, how can we then
determine if a given function k is actually a kernel for some
feature map? This question is answered by checking the Mer-
cer condition, which states that any function fulfilling∑

i,j

cicjk(xi,xj) ≥ 0 (10)

for all possible sets of real coefficients {ci} and sets of data-
points {xi} is a kernel. Alternatively, we can check whether
the kernel matrix K with entries

Kij = k(xi,xj) (11)

associated with any dataset {xi} is always positive semi-
definite.

If we now come back to the example of linear classification
in a feature space that motivated our introduction to kernel
methods, it is natural to ask how we can best choose the sepa-
rating hyperplane. The most common strategy and application
for kernel methods is the support vector machine (SVM). The
idea behind SVMs is to find the hyperplane with the maxi-
mal margin. The margin describes the distance of the dataset
on either side of the hyperplane. Intuitively, a larger margin
is better, since the result would be that outliers of the dataset
have a smaller chance of being wrongly classified. This way,
SVM is an algorithm that takes as input the kernel matrix from
Eq. (11) and delivers the values αi and b for Eq. (3) that cor-
respond to the decision boundary with the maximal margin.

To predict a class label for a new datapoint, we need to cal-
culate the kernel with respect to the training datapoints and
decide on a class label, as shown in Eq. (3). A strong advan-
tage of SVMs is that usually only few weights {αi} contribute
significantly to the sum in Eq. (3). We can thus make a predic-
tion by calculating the kernel with respect to these datapoints
from the training dataset. The corresponding datapoints are
the eponymous support vectors – as they support the decision
boundary. Intuitively, we can imagine that comparing a new
datapoint only to points close to the decision boundary will
give important information about the class label.

Kernel methods are not limited to classification. In fact,
one can take any ML technique that can be reformulated in
terms of inner products and replace the inner products by ker-
nel functions to get a “kernelized” variant. This leads to inter-
esting applications such as kernel principal component analy-
sis [27] or kernel ridge regression [28].

While we have now seen that kernel methods can enhance
the power of many ML techniques, the current progress of
learning models is driven by deep neural networks, not ker-
nel methods. This is due to their following downsides: For
the application of kernel methods, the kernel matrix with re-
spect to the input data needs to be constructed – which has
quadratic complexity in the number of datapoints. This can al-
ready constitute a substantial impediment in the world of big
data where the number of datapoints can be in the millions.
Another downside is that the selection of a suitable kernel for
a given problem is a non-trivial task. The radial basis function
(RBF) kernel also known as Gaussian kernel given by

kRBF(x,x′) = exp

(
−‖x− x

′‖2

2σ2

)
(12)

is often a decent starting point, but even there the parameter σ
that quantifies how close datapoints need to be to be consid-
ered similar needs to be fine-tuned.

Despite the fact that kernel methods do not dominate con-
temporary ML applications, they are extremely useful to un-
derstand learning models in general. This is because many
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learning methods can be mapped back to kernel methods for
which in turn there exist theoretical guarantees, for example
on their capability to generalize on unseen data [26].

III. QUANTUM EMBEDDING KERNELS

On NISQ hardware, we make use of quantum gates, like
Pauli rotations, to load data onto the quantum computer. This
constitutes a quantum circuit that is represented by a unitary
operation dependent on the specific datapoint, U(x). As soon
as the data is loaded, the quantum system is in a state that
depends on the datapoint in question,

|φ(x)〉 = U(x) |0〉 . (13)

This approach is also known as a quantum feature map [16]
because we are effectively embedding the datapoint in the
Hilbert space of quantum states. As we learned in Sec. II,
it is no large step from a feature map to a kernel function. We
only need to take the inner product between quantum states,
which is given by the overlap

k(x,x′) = |〈φ(x′)|φ(x)〉|2. (14)

This is the quantum embedding kernel (QEK) associated to
the quantum feature map |φ(x)〉.

In general, we are not able to avoid noise, which means that
we cannot assume that the embedded quantum state is pure.
In this case, the quantum embedding is realized by a data-
dependent density matrix ρ(x), which for a pure state reduces
to ρ(x) = |φ(x)〉〈φ(x)|. The inner product is given by

k(x,x′) = Tr{ρ(x)ρ(x′)}. (15)

This inner product is also known as the Hilbert-Schmidt inner
product for matrices. For pure quantum states, this reduces to
Eq. (14).

In summary, any quantum feature map induces a QEK.
We can use this kernel as a subroutine in a classical ker-
nel method, for example the SVM, which yields a hybrid
quantum-classical approach. In this case, the separating hy-
perplane is constructed in a purely classical manner, only the
kernel function between the training datapoints is evaluated
on the quantum computer.

To be able to use QEKs in this way, we need to evaluate the
overlap of two quantum states on near-term hardware. There
are a number of advanced algorithms to estimate the overlap
of two quantum states [29–33]. All these algorithms work
for arbitrary states, and so they are agnostic to how the states
were obtained by necessity. By exploiting the structure and
specifics of QEKs, though, we can do better.

For unitary quantum embeddings, i.e. embeddings resulting
in a pure quantum state, this is straightforward if we can con-
struct the adjoint of the data-encoding circuit, U†(x). In this
case, we can rewrite the overlap as

|〈φ(x′)|φ(x)〉|2 = |〈0|U†(x′)U(x)|0〉|2. (16)

|0〉〈0||0〉 U(x) U†(x′)

Figure 4. The overlap between the embedded states can be computed
by applying the unitary U(x) embedding the first datapoint and the
adjoint of the unitary embedding the second datapoint U†(x′). This
approach results in a doubled circuit depth but does not need auxil-
iary qubits. It works only for pure states.

Z|0〉 H H

|0〉 U(x)

|0〉 U(x′)

Figure 5. The overlap between the embedded states can be com-
puted by embedding both datapoints in parallel. An auxiliary qubit
is then used together with controlled SWAP operations to extract the
overlap, which is obtained from the expectation value of the Pauli-Z
observable on the auxiliary qubit. This approach results in a doubled
circuit width and requires one additional qubit and controlled SWAP
operations. It works for pure and mixed states.

This is nothing but the probability of observing the |0〉 state
when measuring the state U†(x′)U(x)|0〉 in the computa-
tional basis. In order to obtain an estimate, we can therefore
initialize the quantum system in the |0〉 state, apply the uni-
tary operation U(x) followed by U†(x′), and finally measure
in the computational basis. From there, we only need to record
the frequency with which the prepared state is found in the |0〉
state to obtain our estimate. The circuit diagram for this ad-
joint approach can be found in Fig. 4. This scheme does not
need auxiliary qubits, yet it applies the data-encoding circuit
twice (or the adjoint thereof). This way, while the width of
the circuit for the adjoint approach does not increase from the
data-encoding one, the depth is doubled.

Another alternative approach to estimate the overlap be-
tween two quantum states is the SWAP test. The SWAP test is
based on the SWAP trick, a mathematical gimmick that allows
us to transform the product of the density matrices in Eq. (15)
into a tensor product:

k(x,x′) = Tr{ρ(x)ρ(x′)} (17)
= Tr{(ρ(x)⊗ ρ(x′))S}, (18)

where S denotes the SWAP operation between the two quan-
tum systems in the states ρ(x) and ρ(x′). To extract this
quantity, the SWAP test makes use of an auxiliary qubit that
controls the SWAP operation. The exact circuit is depicted in
Fig. 5. While this approach needs auxiliary qubits and a quan-
tum computer roughly twice as wide, its depth increases only
ever so slightly, and it also works for mixed quantum states.
If the deeper requirements of the adjoint approach were too
limiting, the SWAP test would be a natural alternative.

As quantum feature maps occur in many applications of
NISQ computing, it is no surprise that QEKs are instrumental
beyond their use as subroutines for classical machine learning
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methods. In Ref. [22] it was shown that all variational quan-
tum learning methods boil down to kernel methods, providing
an opening for kernel theory to explore the properties of these
learning models.

IV. TRAINING QUANTUM EMBEDDING KERNELS

Quantum feature maps can have variational parameters. In
this section, we discuss how to adjust these parameters to im-
prove the classification capabilities of quantum embedding
kernels.

Before we can dive into the details we take a step back to
clear up the terminology we use in this section. Adjusting
the variational parameters of a quantum feature map – and
therefore of its associated QEK – can be seen as a particular
instance of model selection. For our purposes, we again split
this into two steps, first kernel selection and second kernel
optimization.

Kernel selection is choosing a particular quantum circuit
layout, or ansatz, with certain variational parameters. Here,
we refer to a variational family of kernels, much like the fam-
ily of RBF kernels defined in Eq. (12) where we vary the
standard deviation σ. Kernel optimization corresponds to the
process of fixing the variational parameters to ensure a good
classification performance on our target data. Both steps are
important to assure a good performance of kernel-based meth-
ods. In the following, we will shed light on the possible ways
to perform kernel optimization.

A straightforward way to perform kernel optimization is ex-
haustive parameter search. For a single parameter θ ∈ R
this method consists of fixing a range of parameter values
[θmin, θmax] and an ε-cover of it:

{θmin, θmin + ε, . . . , θmax − ε, θmax}. (19)

Then, a SVM is fitted to the training data for every value in the
ε-net and we keep the one which attains the highest accuracy
score. This way, we need to fit roughly p := (θmax − θmin)/ε
many SVMs in order to pin down the optimal choice of θ. If,
on the contrary, our kernel comprised a vector of parameters
θ ∈ Rr, we would still proceed in an analogous way: In a
simplified case, we would still fix a range of parameter val-
ues θ ∈ [θmin, θmax]r and an ε-net. Notice how, now, the
ε-net would contain approximately pr sites, since each pa-
rameter component θi would need to take all possible values
between θmin and θmax for every possible combination of the
remaining parameter components! It is thus clear to see how
the computational complexity of exhaustive parameter search
grows exponentially O(exp(r)) with respect to the parameter
vector dimension r. One particular example of this type is the
“leave-one-out” error bound [26], where after fitting the SVM
to all points but one, the predicted label for the left out point
describes the quality of the kernel. Because of the unfavorable
scaling, exhaustive parameter search procedures are thus only
suitable for optimizing few parameters.

It is therefore sensible to resort to a proxy quantity that is
easier to compute but still acts as a predictor for classification
accuracy. Ref. [34] provides an overview of such measures as

provided in Refs. [35–40], using the kernel-target alignment
from Ref. [41] as central building block.

In the following, we assume initially that the training
dataset is balanced, meaning that it contains equally many
datapoints per class. The generalization to unbalanced
datasets is straightforward and left to the end of this section.

The central idea behind the kernel-target alignment is that
the labels for the training set can be seen as an instance of
a very particular kernel, which acts as an oracle that always
outputs the correct similarity for two datapoints:

k∗(x,x′) =

{
1 if x and x′ in same class
−1 if x and x′ in different classes

(20)

Of course, in general we do not have access to this ideal ker-
nel, but on the training data it is given by the training labels
and the kernel matrix predicted by this ideal kernel has entries

K∗ij = yiyj . (21)

This means that, if we place the labels into a vector y, we
can express the ideal kernel matrix as the outer product of that
vector with itself:

K∗ = yyT . (22)

To get to a measure of how well a kernel captures the nature
of the training dataset we need a way to compare the kernel
matrix with the ideal one. To obtain the kernel-target align-
ment we will make use of geometric reasoning. Remember
that we can measure the alignment of two vectors a and b by
evaluating and normalizing the inner product:

A(a, b) =
〈a, b〉√
〈a,a〉〈b, b〉

. (23)

The alignment is related to the angle ^(a, b) between the vec-
tors as cos^(a, b) = A(a, b), which means that the align-
ment is a quantity that ranges from -1 for vectors pointing in
exactly opposite directions to +1 for vectors pointing in ex-
actly the same direction.

We can apply the same reasoning to kernel matrices. To do
so, we need to define an inner product between two matrices.
For the definition of the kernel-target alignment we will use
the Frobenius inner product. For that, we simply treat the
matrices as if they were column vectors, with every entry of
the matrix being a separate entry of the vector. This means
that the inner product is just

〈A,B〉F =
∑
ij

AijBij = Tr{ATB}, (24)

from where one defines the alignment of two matrices B and
B′ as

A(B,B′) =
〈B,B′〉F√

〈B,B〉F 〈B′, B′〉F
. (25)

Now we have all the ingredients to define the kernel-target
alignment:

TA(K) = A(K,K∗) =
〈K,K∗〉F√

〈K,K〉F 〈K∗,K∗〉F
. (26)
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Figure 6. The kernel-target alignment is high if the feature vectors
corresponding to datapoints in the same class cluster together and the
feature vectors of points in the opposite class lie exactly opposite to
them. This illustrates that a high kernel-target alignment allows for
easier linear separability.

We can equivalently express this in terms of the kernel func-
tion and the training dataset:

TA(k) =

∑
ij yiyjk(xi,xj)√(∑

ij k(xi,xj)2
)(∑

ij y
2
i y

2
j

) (27)

=

∑
ij yiyjk(xi,xj)

n
√∑

ij k(xi,xj)2
, (28)

where we used the fact that for all labels y2i = 1 and n denotes
the number of points in the training set.

At the beginning of this section we assumed that the train-
ing set was balanced, i.e., that it contains the same number
of datapoints for each class. If this were not the case, the
approach we just outlined would run into problems, because
the contributions from one class would dominate the kernel-
target alignment. We could however mitigate this by simply
rescaling the labels, dividing them by the number of samples
available in their class. In this case, we cannot use Eq. (28)
but have to stay with Eq. (27).

We can gather further intuition why the kernel-target align-
ment is a meaningful measure by looking at the numerator of
Eq. (27),

∑
ij yiyj k(xi,xj). This quantity is also known as

the kernel polarity. Each term yiyj k(xi,xj) in the sum is a
product of the kernel function of two points and their labels.
If both points belong to the same class, yiyj = +1, the kernel
value increases the kernel-target alignment, whereas if the la-
bels are different yiyj = −1, the term decreases it. Increasing
the kernel-target alignment therefore means both increasing
the kernel values for datapoints from the same class and de-
creasing them for datapoints in different classes. Fig. 6 visu-
ally illustrates how a large kernel-target alignment allows for
easier linear classification of the training data. Beyond this
intuition, the kernel-target alignment profits from theoretical
guarantees regarding both its high concentration about the ex-
pected value and its good generalization behavior in labeling
previously unseen data [40–42].

With the kernel-target alignment we now have a measure
that we can use as a cost function to maximize through a hy-

brid quantum-classical optimization loop [43]. At every iter-
ation, the quantum processing unit (QPU) is used to evaluate
the kernel matrixK, recall constructingK has quadratic com-
plexity in the number of datapoints.

It turns out that optimizing the kernel-target alignment is
closely related to the “quantum metric learning” approach put
forward in Ref. [25] that analyzed different strategies to op-
timize quantum feature maps. Indeed, the Hilbert-Schmidt
distance-based method is the same as optimizing the unnor-
malized kernel-target alignment, the polarity. We detail the
connection in App. A.

V. THE EFFECTS OF NOISE

Noise is one of the namesakes of NISQ devices and consid-
ering the effects of noise is therefore of utmost importance. In
this section, we discuss how both noise arising from imperfect
quantum operations – device noise – and noise arising from fi-
nite sampling of expectation values affects QEKs and how it
can be mitigated.

A. Device Noise

NISQ devices suffer from unavoidable noise caused by
unintentional interactions with the environment or imperfect
control. It is thus not possible to prepare pure quantum states
with an embedding circuit. This fact has multiple implications
for QEKs and their implementation.

Noise can be modeled by quantum channels. Formally, any
map that takes valid quantum states to valid quantum states
can be seen as a quantum channel. An example is depolariz-
ing noise, which corresponds to a complete loss of informa-
tion about the underlying quantum state with a certain proba-
bility 1 − λ. We formally realize it by replacing the system’s
quantum state with the maximally mixed state with probabil-
ity 1− λ:

Dλ[ρ] = λρ+ (1− λ)
1

2N
. (29)

Depolarizing noise is a popular model for noise in quantum
systems, as it is simple and subsumes other, more nuanced
noise models.

As we have seen in Sec. III, the QEKs can also be defined
for mixed states for which it corresponds to the state over-
lap. The SWAP test can be directly employed to compute the
overlap of mixed states (see Fig. 5), but often we would like
to use the adjoint method due to its lower qubit requirements
(see Fig. 4). The adjoint method, however, needs more con-
sideration, because the implementation of the adjoint noisy
embedding circuit itself is not straightforward. But if we fail
to implement the correct adjoint operation, we are no longer
computing the overlap of the quantum embedding states and
therefore also do not compute a valid kernel!

In the noiseless embedding circuit, all operations are uni-
tary and typically the adjoint of every elementary operation
is available. This becomes apparent when we consider that
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any quantum circuit can be constructed from controlled NOT
gates, which are self-adjoint, and single-qubit Pauli rotations,
whose adjoint is obtained by performing the same rotation
with negated angle.

The device noise, however, can in principle prevent us from
implementing the adjoint embedding. As an example, con-
sider a quantum channel that represents a noisy Pauli rotation
gate, V(θ). We model it by the original rotation gate R(θ)
that is followed by a noise channel N . The channel N could
model imprecision in the control of the rotation angle, un-
wanted interactions with the environment or other noise pro-
cesses, but we will leave it arbitrary for the sake of the exam-
ple. The noisy gate is then given by

V(θ)[ρ] = N [R(θ)ρR†(θ)]. (30)

The adjoint of the noisy Pauli rotation gate is then given by

V(θ)†[ρ] = R(−θ)N †[ρ]R†(−θ). (31)

But how would we implement V(θ)†? The very nature of a
noise channel implies that we cannot control it or choose at
which time the noise occurs. Instead, we have to work with
the noisy quantum gates at our disposal, which means that we
can only approximate V(θ)† by V(−θ):

V(−θ)[ρ] = N [R(−θ)ρR†(−θ)] 6= V(θ)†. (32)

In general, this approximation is not equal to the adjoint of
the noisy unitary. This only happens if the noise channel N
is self-adjoint and commutes with the unitary operation R(θ),
as is true for the depolarizing noise introduced in Eq. (29).

Let us now take a step back and look at actual NISQ de-
vices. They are usually programmed at the gate-level, assum-
ing perfect unitaries. The adjoint of a perfect unitary circuit
is readily available, but only if the behavior of the available
NISQ device is well-modeled by depolarizing noise can we
expect this “naive” adjoining of the unitary gates to still com-
pute the overlap of embedded states for the QEK.

B. Mitigating Depolarizing Noise

Mitigating the effects of device noise is very important to
make NISQ practice. It is therefore no surprise that the topic
has gained a lot of attention and that many techniques have
been developed to mitigate device noise [44–50]. In the fol-
lowing, we will complement these with an approach that ex-
ploits the very definition of the quantum embedding kernel
and that can be freely combined with other mitigation ap-
proaches.

We have introduced depolarizing noise as a rather general
approach to model the noise in quantum devices. We will
model the noise with Dλ as in Eq. (29), where the depolar-
izing channel is assumed to act homogeneously on the whole
system. We will refer to λ – the probability that the depolariz-
ing channel does not cause a loss of information about the un-
derlying state – as survival probability. Note that it may well

be possible that the probabilities λi differ for distinct embed-
ded datapoints xi, as one might need longer pulse sequences
to be embedded than the other, causing more noise.

We now assume that the embedding is composed of this
noise channel and the noiseless unitary embedding:

ρ(x) = Dλ[|φ(x)〉〈φ(x)|]. (33)

We can exploit the composition rule Dλ1
Dλ2

= Dλ1λ2
to

compute the noisy kernel matrix entries

K
(dev)
ij = Tr{ρ(xi)ρ(xj)} (34)

= Tr{Dλi
[|φ(xi)〉〈φ(xi)|]Dλj

[|φ(xj)〉〈φ(xj)|]}
(35)

= Tr{Dλiλj
[|φ(xi)〉〈φ(xi)|φ(xj)〉〈φ(xj)|]} (36)

= λiλjKij + (1− λiλj)
1

2N
. (37)

We can exploit the fact that all diagonal entries of the noise-
less kernel matrix K are known to be 1. While we could use
this knowledge to save quantum computational cost, we pro-
pose to use it to gather information about the device noise. We
can use Eq. (37) to infer the survival probability λi from the
diagonal element of the noisy kernel matrix K(dev)

ii :

λi =

√
K

(dev)
ii − 2−N

1− 2−N
. (38)

With those values at hand we can recover the noiseless kernel
matrix entries

Kij =
K

(dev)
ij − 2−N (1− λiλj)

λiλj
. (39)

We denote this mitigation strategy as M-SPLIT. We can
deduce two even simpler mitigation strategies from this ap-
proach by assuming that all λi have the same value. This
value can be estimated by averaging multiple of the λi ob-
tained from Eq. (38), a strategy which we denote as M-MEAN
and which requires less diagonal elements to be measured. Al-
ternatively, we can choose to further save resources and only
measure one diagonal entry to estimate the survival probabil-
ity, which we denote as M-SINGLE. There are a number of
options for which entry to use, for the sake of simplicity and
reproducibility we always use the first entry.

C. Finite Sampling Noise

Recall Eq. (14), where we first introduced the definition
of QEKs. And, critically, notice from Eq. (16) that we pro-
posed the so-called adjoint method for estimating the overlap:
a frequentist way of approximating the kernel function from
quantum circuit evaluations. Measuring such kernel func-
tions results in independent and identically distributed (i.i.d)
Bernoulli random variables k̂ij , since each circuit evaluation
outputs either a 1, in case the observed state is |0〉, or a 0 other-
wise. By construction, the theoretical kernel value Kij is the
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true mean of this random variable, i.e., E(k̂ij) = Kij . Since
it follows from Born’s rule that an infinite number of circuit
evaluations would be required to pin down the exact kernel
value, there exists a second source of noise originating from
using a finite number of samples.

In reality, we can only estimate the kernel function from a
finite number of experimental runs. How many runs we can
afford is limited by our experimental resources. This incurs
uncertainty beyond the device noise, especially if the number
of runs is small.

Going one step further, notice that the pipeline involves es-
timating the entire kernel matrix, comprising n(n − 1)/2 =
O(n2) independent entries. To gauge the number of required
circuit evaluations Mtot to reach a desired error ε in operator
distance of an estimator to the target kernel matrix, we can use
results from random matrix theory.

The difference between an estimator constructed using M
circuit evaluations per entry, (K̄M )ij =

∑M
s=1 k̂

(s)
ij /M , and

the target kernel matrix K is given by

(ĒM )ij = (K̄M )ij − (K)ij =
1

M

M∑
s=1

k̂(s)
ij −Kij . (40)

Remembering that

E
{

(ĒM )ij
}

= 0, (41)

E
{

[(ĒM )ij ]
2
}

= O
(

1

M

)
, (42)

E
{

[(ĒM )ij ]
4
}

= O
(

1

M2

)
, (43)

allows us to make use of the following result:

Theorem 1 (Latala’s theorem [51, 52]). Let A be a random
matrix whose entries aij are independent centered random
variables with finite fourth moment. Then, for C > 0,2

E{‖A‖} ≤ C
[

max
i

(∑
j

E(a2ij)
)1/2

+ max
j

(∑
i

E(a2ij)
)1/2

+
(∑
ij

E(a4ij)
)1/4]

.

(44)

For our n× n-dimensional error matrix ĒM with moments
as in Eqs. (41-43), this leads to

E{
∥∥ĒM∥∥} = O

( √
n√
M

)
. (45)

Consequently, M = O(n/ε2) measurements per kernel ma-
trix entry are required to ensure an error of ε in operator dis-
tance. As a result, since we need to estimate O(n2) entries of

2 C is a constant depending only on the subgaussian norm of the entries.

the kernel matrix, we require a total of

Mtot = O
(
n3

ε2

)
(46)

circuit evaluations to reach the desired accuracy. A short cal-
culation for Gaussian variables using Bai-Yin’s law [52, 53]
verifies that this scaling is indeed asymptotically optimal,
since the error of kernel matrix entries converges to the Gaus-
sian distribution according to the central limit theorem.

The corresponding constant prefactors can be obtained via
involved methods using results from random matrix theory for
matrices with subgaussian rows [52]

Another important quantity we need to estimate for quan-
tum embedding kernels is the kernel target alignment intro-
duced in Eq. (27), which we use during the kernel training.
Allowing for an error of ε in the kernel target alignment, error
propagation suggests that O(1/ε2) measurements per kernel
entry are required, leading to O(n2/ε2) circuit evaluations in
total.

D. Regularizing the Kernel Matrix

Due to the imperfect sampling outcome for the kernel ma-
trix and the device noise mitigation techniques introduced
above, the obtained matrix might not be positive semi-definite.
However, we know the exact kernel matrix to be positive semi-
definite and this property is a requirement for the matrix to be
used in a classification task. We may therefore regularize the
obtained matrix, validating it as kernel matrix and bringing it
closer to the perfect outcome.

We discuss three methods to find a positive semi-definite
matrix close to a symmetric matrix A: In the first method
called Tikhonov regularization, we displace the spectrum ofA
by its smallest eigenvalue σmin if it is negative, by subtracting
it from all eigenvalues or equivalently from the diagonal [54]:

R-TIK(A) =

{
A− σmin1 if σmin < 0

A else
, (47)

which yields a positive semi-definite matrix. While being for-
mally the same as the original method by Tikhonov [55], we
use it here to assure positive semi-definiteness instead of non-
singularity of the matrix.

The second method called thresholding only changes the
negative eigenvalues of A by setting them to zero [56]. This
is done via a full eigenvalue decomposition, adjustment of the
negative eigenvalues and composition of the adjusted spec-
trum and the original eigenvectors:

D = V TAV (48)
D′ij = max{Dij , 0} (49)

R-THR(A) = V D′V T . (50)

This approach is equivalent to finding the positive semi-
definite matrix closest to A in any unitarily invariant norm. It
is also equivalent to finding the positive semi-definite matrix
which has the largest alignment (see Eq. (26)) with A.
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The third method extends this reasoning by searching the
closest matrix in Frobenius norm, but with the additional re-
quirement that the diagonal elements of the regularized matrix
need be one, incorporating our knowledge about the exact ker-
nel as a constraint. This approach constitutes an semi-definite
program (SDP) and is therefore efficiently computable:

R-SDP(A) = argmin {‖A′ −A‖F : A′ < 0, A′ii = 1} .
(51)

For further details on the computational cost and properties
of the regularized matrices please refer to App. B 1.

We note that other mitigation techniques proposed in the
literature may be combined with the ones discussed here, as
they function on different levels of abstraction. An established
method to reduce the impact of noise is zero noise interpola-
tion to first order [15, 44, 57], which makes use of additional
circuit evaluations at increased noise rates. Furthermore, tech-
niques to suppress errors by duplicating the circuit have been
proposed recently [58, 59]. Both of these methods may be
used to greatly reduce the noise on the kernel matrix before
treating it with regularization and mitigation techniques.

During the preparation of this work, Wang et al. [60]
demonstrated that regularization methods can improve the
classification accuracy of noisy circuits significantly, more
concretely R-TIK, R-THR and flipping the negative eigenval-
ues of the kernel matrix were covered.

VI. QEK PIPELINE

The approaches presented in the previous sections can be
combined into a holistic pipeline for working with quantum
embedding kernels as depicted in Fig. 7. We start from a pa-
rameterized quantum circuit that represents a quantum feature
map with variational parameters set to some initial values. To
adjust the parameters for a specific dataset, a training loop is
run: First, a kernel matrix is obtained from the underlying
NISQ device. As an alternative next step, a mitigation and
regularization strategy can be applied to improve the quality
of the kernel matrix. The kernel matrix is then used to calcu-
late the kernel-target alignment and its gradient with respect to
the variational parameters of the parameterized quantum cir-
cuit. Gradient descent is then used to update the variational
parameters and hence the quantum embedding kernel. This
process is repeated until the desired kernel-target alignment is
reached.

To perform a classification of new data, a support vector
machine is trained using the post-processed kernel matrix of
the optimized quantum embedding kernel. The support vec-
tors of the SVM are then extracted and can be used in a sup-
port vector classifier to predict labels for new datapoints. To
this end, the quantum embedding kernel between the new dat-
apoints and the support vectors have to be computed, but the
training of the SVM itself is purely classical.

VII. NUMERICAL EXPERIMENTS

Let us make our discussion concrete by designing and per-
forming some proof-of-principle experiments. We consider
both noiseless and noisy simulations of quantum circuits as
well as experiments on actual NISQ devices. Each of our ex-
periments is designed to illustrate a specific step of the main
pipeline depicted in Fig. 7. Accordingly, we use different
datasets and QEKs curated to each experiment and repetition.

For the sake of illustration we choose to work on datasets
of 2 dimensions. We use two artificial and one semi-artificial
dataset. The exact construction of each dataset is detailed in
App. C.

The checkerboard dataset represents a 4×4 grid of alternat-
ing classes, where the elements of the checkerboard are drawn
from a continuous uniform distribution centered in the tiles of
the checkerboard. Due to its many different connected compo-
nents, the checkerboard dataset requires a medium sized QEK,
which we use for benchmarking our mitigation and regulariza-
tion techniques. Next, we sample pixels from MNIST hand-
written digit images of classes 0 and 1 and generate datasets
zero vs. not-zero, one vs. not-one, base-zero and base-one to
show a more realistic use of QEKs, for which we use much
larger embedding circuits. Finally, we have the symmetric
donuts dataset, consisting of two pairs of circumscribed cir-
cles with alternating classes. We use real hardware for this
dataset and thus use a fairly shallow and narrow QEK.

For our experiments, we always used the adjoint approach
because of its lower qubit requirements. For the quantum
feature map, we follow Refs. [14, 61, 62] and use a data re-
uploading quantum embedding circuit.

The circuit used in this work is a repetition of the follow-
ing layer architecture that is responsible for both embedding
data and applying trainable gates. One layer comprises: one
layer of Hadamard gates; one layer of single-qubit Pauli-Z ro-
tations, embedding one data feature each; one layer of train-
able single-qubit Pauli-Y rotations; and one ring of controlled
Pauli-Z rotations, in which each qubit acts as control for the
rotation on the next adjacent qubit, considering first and last
as adjacent. Note that all controlled Pauli-Z rotations mutu-
ally commute, therefore allow to execute the ring in constant
circuit depth. Consequently, for a circuit constructed using L
blocks and N qubits, there are 2NL trainable parameters.

Furthermore, we do not tie the ith feature to one particu-
lar qubit, but rather iterate over the features cyclically in each
embedding layer. That means, if there are more data features
n than qubits in the circuit N , one block is not enough to en-
code all features. In this case, we encode the first x1, . . . , xN
features in the first block, and for the second block we start
encoding features xN+1, xN+2, and so on until we reach xn.
From there on, provided there are still more encoding gates
available in the circuit, we start over from x1. The circuit di-
agram for a single block encoding 2-dimensional data on 5
qubits is shown in Fig. 8.

When training our models, we treat the number of qubitsN
and the number of blocks L as hyperparameters of the prob-
lem, much like the number of neurons per layer and the num-
ber of layers in artificial neural networks. In QML, the num-
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Figure 7. Schematic of the pipeline used in this work. Green boxes indicate data, purple boxes indicate process steps that are executed on
quantum hardware. The pipeline used in this work can be split into three separate parts. In the model selection part, depicted on the left, the
parameters of the feature map are adjusted to increase the kernel-target alignment. To calculate the alignment, the kernel matrix is computed
and may afterwards be post-processed to mitigate sampling and device noise. After a sufficient target-alignment is reached, the kernel is used
to train a support vector machine. The resulting support vector classifier is used in the prediction step to predict labels of new datapoints.
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Figure 8. Circuit diagram of the elementary building block used in
the QEK ansatz for N = 5 qubits and m = 2 features. The trainable
parameters of the ansatz are denotes as {θj}s=10

j=1 and x1,2 are the
data features.

ber of qubits is usually referred to as width, and the number of
blocks as depth.

With these kernels, we perform three experiments, corre-
sponding to the three sections that follow. In Sec. VII A we
check the validity of training QEK via noiseless simulations.
Next, we allow for noise sources (as considered in Sec. V)
to test the aforementioned mitigation and regularization tech-
niques in Sec. VII B, still on a classical simulator. Finally, the
culminating experiment studies mitigation techniques again,
but this time using IonQ’s QPU [63], to demonstrate func-
tionality on an actual quantum device.

Our experiments were implemented using the PennyLane

library for QML [64] and code is available at [24]. Hardware
experiments were executed on an IonQ device [63] via Ama-
zon Braket [65].

A. Noiseless simulations

We kick off by testing our approach on ideal lab conditions.
As a first step, we assume both completely negligible noise
and access to infinite samples. This can be achieved using a
classical simulator that stores the entire wave vector at every
step. We perform several experiment repetitions using all in-
troduced datasets.

The experiment takes three inputs: the hyperparameter val-
ues for the QEK, the training set, and the test set. Once these
are provided, the steps are always: (1) sample a few sets of
kernel parameters at random (we do 3 or 5). We refer to
the kernels using these sets of parameters as untrained ker-
nels. (2) to each untrained kernel, fit a SVM using the train-
ing set. Denote the resulting classification accuracy on test
as untrained accuracy. (3) select one of the untrained kernels
based on some quality of its respective accuracy (we select
the lowest one). (4) tune the parameters of the selected un-
trained kernel by maximizing the kernel target alignment (we
use for instance Stochastic Gradient Ascent, with a batch size
as small as 4). Once optimization is finished, we call the re-
sulting object the trained kernel. (5) fit one last SVM using
the trained kernel and the training set and report the achieved
accuracy on the test data. This is the trained accuracy. Of
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our interest in this experiment are, as said, the untrained and
trained accuracy.

There is one additional experiment designed specifically for
the semi-artificial MNIST dataset. For semi-artificial MNIST,
we train the kernels only on the zero vs. non-zero and one
vs. non-one datasets. We tackle a “Zero vs. one” membership
problem with the base-zero and base-one sets via a majority
vote ensemble of the trained kernels from last step. More ex-
tensive explanation on the ensemble experiment to be found
in App. C.

According to the theory presented in Sec. IV and in [34],
one should expect that a trained QEK should outperform the
randomly initialized kernel pre-training3. We expect that
larger QEK profit more from training, because deeper and
wider systems have a larger parameter space, and random ini-
tialization therefore has a lower chance of falling close to a
local maximum. More trainable parameters also convey more
expressivity.

Fig. 9 shows how the quality of the decision boundaries im-
proves from the untrained kernels (left column) to the trained
ones (right column). In all experimental repetitions, though,
there are still some misclassified points, which is not unex-
pected as the underlying kernel functions likely have limited
expressivity. The precise numerical results of this experiment
are found in Tab. I. The table lists the minimum and maximum
untrained accuracy with random parameters for the kernel, the
trained accuracy and the choice of hyperparameters for each
experiment repetition. Notice that the “zero vs. one” ensem-
ble experiment does not have untrained kernels by construc-
tion.

Upon inspecting the results, we notice how trained accuracy
values range from 0.75 for the smallest QEK (width and depth
equal to 3) to 0.97 for repetitions with larger circuits and we
even obtain a perfect score for the ensemble experiment. We
identify the anticipated general trends: training the kernel al-
ways improved the accuracy compared to the untrained kernel
with minimum accuracy in our experiment. This is empirical
evidence that maximizing kernel target alignment comes with
improved accuracy. Despite the consistent improvement over
the untrained kernel with minimum accuracy, the untrained
kernel with maximum accuracy matches the trained kernel in
the “zero vs. not-zero” repetition, and even comes out on top
for the smaller instance of “symmetric donuts”. Note that in-
creasing the size (and implicitly the expressivity) of the em-
bedding circuit in the “symmetric donuts” repetition leads to
the trained QEK accuracy being higher than the maximum
untrained one.

3 Important noting is that target alignment optimization is a heuristic that
aims at guaranteeing good classification and generalization, not better.
There exist adversarial datasets where perfect accuracy can be achieved
with very low alignment. For instance, consider a dataset where points of
each class are organized in two long parallel lines, one label per line.
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Figure 9. Datasets and decision boundaries of SVMs constructed
using different QEKs in noiseless simulations. Each plot shows the
real plane and the axes are cartesian coordinates in arbitrary units.
The rows correspond to the different datasets, of which a detailed ac-
count can be found in App. C. The columns correspond to the kernel
before (left) and after (right) target alignment training. The classi-
fication accuracy achieved in every repetition is presented in Tab. I,
next to the respective hyperparameters.

B. Mitigation and regularization experiments

We now investigate the effect of the regularization and
device noise mitigation techniques introduced in Sec. V B
and V D. To this end, we simulate device noise with a noise
model based on local depolarizing noise (see App. C 5 for de-
tails) and test the post-processing performance on the checker-
board dataset.

For a range of base survival probabilities λ0 and measure-
ments M per kernel matrix entry, we first compute the noisy,
sampled kernel matrix K̄M . We then consider any combina-
tion of up to three methods with the order regularize - miti-
gate - regularize, including combinations that skip one or two
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Table I. Kernel experiments and ensemble experiments - datasets, circuit hyperparameters and achieved accuracies

Dataset total samples (n) Width (N ) Depth (L) Untrained Untrained Trained
(minimum) (maximum) (from minimum)

Checkerboard 60 datapoints 5 8 0.52 0.52 0.97
Zero vs not-zero 30 datapoints 4 32 0.9 0.97 0.97
One vs not-one 30 datapoints 4 32 0.77 0.77 0.97

Zero vs one 10 images (15 datapoints each) 4 32 NA NA 1
Symmetric Donuts 120 datapoints 3 3 0.58 0.82 0.75
Symmetric Donuts 120 datapoints 4 3 0.65 0.70 0.85
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Figure 10. Relative improvement q in alignment (see Eq. (52)) for
several base survival probability λ0 and numbers of circuit evalua-
tions per matrix entry M under a noise model based on local de-
polarizing noise (see App. C 5). We here use the best of our post-
processing combinations, which consists only of R-SDP, rated by
how often they performed best across all noise regimes (for the de-
tailed ranking see App. B 2). The additional line in the color bar and
the marker in the heatmap indicate the best relative improvement and
the corresponding noise parameters.

of these steps, to post-process K̄M into K(post). The quality
of each mitigation strategy is finally determined as the change
in alignment with K (introduced in Eq. (25)), the noiseless
matrix, compared to K̄M , relative to the deviation of the raw
matrix from perfect alignment:

q =
A
(
K(post)

)
−A

(
K̄M

)
1−A

(
K̄M

) , (52)

where in a slight abuse of notation we abbreviated
A
(
K(post)

)
:= A

(
K(post),K

)
and skipped the dependence

on the exact kernel matrix K.
Fig. 10 shows the improvement q across the base survival

probabilities and numbers of circuit evaluations for the best of
the 42 combinations of mitigation and regularization strate-
gies, achieving values between 0% and 43.5%. We especially
see larger improvements for lower numbers of measurements.
For more details on the considered combinations of regular-
ization and mitigation and for the best choice for different
noise regimes, please refer to App. B 2.

Overall, we see that post-processing can in general enhance
the quality of the obtained kernel matrix significantly, in ad-
dition to other possible mitigation techniques that may reduce
the sampling and device noise strengths effectively [15, 44,

57] or even at the hardware level [58, 59]. At the same time,
one has to choose the mitigation and regularization techniques
carefully as their quality depends on the number of circuit
evaluations and device noise level. In particular, the post-
processing methods are not attributed to one source of noise
each, but e.g. regularization might be the better strategy for
tackling device noise, which it was not designed to counter,
as we saw in the regime of strong device noise. If no esti-
mate for the noise levels is available, applying a simple reg-
ularization routine such as thresholding offers systematic and
consistent improvement, but for realistic noise levels, device
noise mitigation typically provides even better results (also
see Sec. VII C and App. B).

When using one of the mitigation techniques, one should
consider that for M-SINGLE, only one of the diagonal entries
of the kernel matrix needs to be calculated, while multiple
(all) diagonal entries are required for M-MEAN (M-SPLIT).

C. Hardware experiments

So far, all experiments in this section were run on classi-
cal simulators. While we tried to use fair noise models and
reasonable circuits, it is worthwhile to investigate the behav-
ior in real-world conditions. To test the performance of the
introduced techniques on actual quantum hardware, we have
computed the kernel matrix for the symmetric donuts dataset
using three qubits on an ion trap QPU by IonQ.

For the computation we have used M = 175 circuit eval-
uations per kernel matrix entry and because we measured the
diagonal entries for mitigation purposes, the total number of
circuit evaluations sums up to about 3.2 · 105 in total. In addi-
tion, we have sampled kernel matrices for several smaller M
values from the measured distribution4.

Fig. 11 shows the alignment A
(
K̄M

)
between the obtained

kernel matrix K̄M and the noiseless matrix K, as well as
the alignment A

(
K(post)

)
between the post-processed matrix

K(post) and K. For each number of circuit evaluations M ,
we plot the two best of the 42 post-processing combinations.
Note that many of these combinations yield a quality similar

4 Note that this is not the same as a proper computation on the quantum
device with decreased M because we sample from a sample and not from
the true distribution directly.
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Figure 11. Alignment A of the kernel matrix measured on the ion
trap QPU with the simulated, noiseless kernel matrix K for vari-
ous numbers of circuit evaluations per matrix entry M , with and
without the respective two best post-processing strategies. Apply-
ing our device noise mitigation techniques M-MEAN/M-SPLIT (see
Sec. V B), which assume a simple, global depolarizing noise model,
and matrix regularization R-SDP results in an improved alignment.

to the best choice. As expected, the quality of the kernel ma-
trix improves with the number of circuit evaluations and as
predicted by our simulation results (see App. VII B), the post-
processing methods increase the alignment significantly. The
achieved values for the relative improvement q range between
10.1% and 25.4% with a mean of 14.9%.

We note that the combination M-MEAN, R-SDP, which
is either best or second best in the hardware results, was cor-
rectly predicted for small device noise levels by our simula-
tions of depolarizing noise, on a different dataset, with differ-
ent circuit depth and width (see App. B) and compiled to a dif-
ferent elementary gate set. This indicates that the depolarizing
noise model captures properties of the noise in the QPU that
are significant for the kernel matrix computation, and suggests
that these post-processing methods show robust performance
across different circuit depths, qubit numbers and datasets.

In conclusion, our results on the actual quantum device
demonstrate an increased kernel matrix quality when using
post-processing, which may allow for improved classification
accuracy (also see [60]) or alternatively for a reduced number
of circuit evaluations while maintaining a fixed classification
performance.

VIII. SUMMARY AND OUTLOOK

In this work, we have studied the concept of quantum
embedding kernel (QEK). Here, quantum embedding cir-
cuits serve as feature maps for kernel-based machine learning
(ML). To optimize variational parameters of the QEKs, we
transferred the concept of kernel target alignment to the quan-
tum setting. We have performed various numerical experi-
ments that showed improvement in classification accuracy af-

ter training.

As the kernel matrices must be positive semi-definite, and
the QEKs run on near-term quantum device, we have also in-
vestigated noise mitigation techniques. Concretely, we pro-
posed device noise mitigation techniques specific for kernel
matrices and combined them with regularization methods. We
tested a large set of combinations, both on simulated depolar-
izing noise as well as on data from a real quantum processing
unit. In both scenarios we found that post-processing methods
can partly recover the noiseless kernel matrix. Based on these
results we recommend best-practice post-processing strategies
for different noise regimes.

There are two immediate challenges remaining when ap-
plying post-processing methods. On the one hand, we need to
rate the methods when we do not have access to the noiseless
matrix. On the other hand, the impact of the methods on the
classification accuracy remains to be investigated.

In the design and training of QEKs, one could explore var-
ious aspects. A clear question would be the choice of ansatz
families. Some key objects of study for this would be the ex-
pressivity of different circuits, the dependence on the dataset,
the optimal choice of hyperparameters (or, alternatively, how
one could perform empirical risk minimization successfully),
or how one would build gauge invariant kernel functions [66].
Another major topic is investigating the effect of the barren
plateau phenomenon [67–69] in the kernel setting, and sub-
sequently the study of (quantum-aware) cost function alterna-
tives to the target alignment.

Finally, one could explore whether the proposed model can
be transferred to more general tasks such as unbalanced binary
classification, multi-class classification, or regression.
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ometric deep learning: Grids, groups, graphs, geodesics, and
gauges, arXiv:2104.13478 (2021).

[67] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network train-
ing landscapes, Nat. Commun. 9, 10.1038/s41467-018-07090-4
(2018).

[68] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[69] A. Uvarov and J. Biamonte, On barren plateaus and
cost function locality in variational quantum algorithms,
arXiv:2011.10530 (2020).

[70] Scientific co2nduct, online (2021).
[71] V. Strassen, Gaussian elimination is not optimal, Numerische

mathematik 13, 354 (1969).
[72] Y. T. Lee, A. Sidford, and S. C.-w. Wong, A faster cutting plane

method and its implications for combinatorial and convex op-
timization, in 2015 IEEE 56th Annual Symposium on Founda-
tions of Computer Science (IEEE, 2015) pp. 1049–1065.
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averaging the embedded quantum states

ρ±(θ) =
1

|S±|
∑
x∈S±

|φθ(x)〉〈φθ(x)| (A1)

=
1

|S±|
∑
x∈S±

φθ(x). (A2)

Here, we denoted the density matrix of the embedding as
φθ(x) = |φθ(x)〉〈φθ(x)|. The state ρ± models an approach
where the the encoded datapoint x is uniformly sampled from
S±.

Ref. [25] suggests to optimize the embedding |φθ(x)〉 by
maximizing the Hilbert-Schmidt distance of the class states,
i.e.,

P (θ) = Tr{(ρ+(θ)− ρ−(θ))2}. (A3)

Its relation to kernel-target alignment becomes apparent if we
rewrite the numerator of the kernel-target alignment – the po-
larity – in terms of these density matrices. We therefore con-
sider the polarity for imbalanced datasets, where we rescale
the labels with the number of datapoints in the class. The
rescaled labels are denoted as ŷj .

N∑
i,j=1

ŷiŷjkθ(xi,xj) =

N∑
i,j=1

ŷiŷj〈φθ(xi), φθ(xj)〉 (A4)

=

〈∑
i=1

ŷiφθ(xi),
∑
i=1

ŷiφθ(xi)

〉
(A5)

=

∥∥∥∥∥∑
i=1

ŷiφθ(xi)

∥∥∥∥∥
2

. (A6)

The polarity is therefore nothing else but the squared norm
of
∑
i=1 ŷiφθ(xi), which is a weighted sum of the embedded

datapoints. For QEKs, this is equal to the difference of the
two class matrices introduced above:∑

i=1

ŷiφθ(xi) =
∑

x+∈S+

φθ(x+)

|S+|
−

∑
x−∈S−

φθ(x−)

|S−|
(A7)

= ρ+(θ)− ρ−(θ). (A8)

This means that the polarity is equal to the Hilbert-Schmidt
distance introduced in Ref. [25], as found in Eq. (A3)

As already noted in Ref. [25], the polarity can be rewritten
as

P (θ) = Tr{ρ+(θ)2 + ρ−(θ)2 − 2ρ+(θ)ρ−(θ)}. (A9)

Consequently, increasing the polarity translates to an increase
in the purity of the class states Tr{ρ±(θ)}2, thereby encour-
aging points in the dataset to cluster closer together in fea-
ture space. At the same time, this cost function decreases the
overlap of the two data embedding states, thereby encourag-
ing them to reside in different corners of the Hilbert space.

However, we are of the opinion that the kernel-target align-
ment – representing the normalized polarity – is a measure

that is easier to interpret and more accessible to numerical op-
timization than the pure polarity. Ref. [25] proposes a classi-
fier where the overlap of the embedded datapoint with the two
class states is computed. The label of the class state with the
larger overlap is then assigned to the new datapoint. This cor-
responds to a kernelized nearest-centroid classification. We
conclude that the use of the embedding in a support vector ma-
chine allows for more sophisticated decision boundaries than
the method proposed in Ref. [25].

Appendix B: Details on post-processing methods

1. Runtimes and output properties

The post-processing methods we introduced in Sec. V D
and V B differ in their classical and quantum computational
cost and in the properties of the output matrix.

The regularization methods R-TIK and R-THR require the
computation of the smallest eigenvalue and of the full eigen-
value decomposition respectively, which has classical com-
plexityO(n3) with naive methods but more realistically scales
like matrix multiplication for relevant sizes with O(n2.8)
(Strassen algorithm [71])5. The worst case scaling for R-SDP
is O(n3.8), again assuming the Strassen algorithm for matrix
multiplication and considering that we use n constraints to fix
the diagonal entries [71, 72]. In our experiments on datasets
with 60 datapoints, the former two methods had negligible
computational cost, whereas R-SDP took 0.5s on average for
this rather small matrix. In addition to this large difference
in the prefactor, some additional tests for random matrices
confirmed a significantly worse scaling of the cost for R-SDP
compared to R-TIK and R-THR.

As they only act on the kernels spectrum, R-TIK and
R-THR preserve the eigenbasis of the kernel matrix, a po-
tentially relevant property for the classification task. On the
contrary, R-SDP does not preserve the eigenbasis but ensures
that the output kernel matrix has the correct diagonal entries.

For the proposed mitigation methods, additional quantum
computation is required in order to determine the diagonal
entries, which in turn are used to estimate the depolariz-
ing survival probabilities. The number of required entries
is 1, nmean ∈ [1, n] and n for M-SINGLE, M-MEAN and
M-SPLIT, respectively, which then should be measured as of-
ten as the other matrix entries. While estimating the probabili-
ties has negligible cost, the modification of the matrix requires
O(n2) classical computation resources6.

Considering Eq. (38), we see that our mitigation methods
estimate the survival probability λi to be larger than one for
K

(dev)
ii > 1 and to be imaginary if K(dev)

ii < 2−N , both being

5 If this was to be a bottle neck, the full matrix multiplication may be skipped
when multiplying the kernel matrix with vectors only.

6 This may again be improved if we are not interested in the fully computed
matrix but e.g. in multiplying it with vectors, should it ever become a major
resource requirement.
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unreasonable estimates. The first will only ever occur if a pre-
vious post-processing method increased the diagonal element
K

(dev)
ii too far, as a QPU itself will not output measurement

probabilities above 1. The second may occur in the presence
of very strong noise that suppresses the exact value of 1 to
2−N , which would presumably imply the QPU output to be
impracticably flawed anyways. For M-SINGLE (M-MEAN),
the same reasoning holds for the single measured entry (for
the average of the considered diagonal entries), i.e. in partic-
ular for M-MEAN we are unlikely to run into either of the
above problems.

Even if the estimated survival probabilities λi lie in the
physically meaningful range [0, 1], the mitigation might still
produce kernel matrix entries that are not valid probabilities
and thus can impossibly be the result of a real QEK evalua-
tion. For a given noisy matrix entry K(dev)

ij , this happens if

K
(dev)
ij 6∈ [ε, λiλj + ε] , (B1)

where we abbreviated ε = 2−N (1 − λiλj) and the estimated
probabilities fulfill λi = λj for M-SINGLE and M-MEAN.
Note that λi ≈ 1 and ε� 1 for reasonable survival rates.

In conclusion, even though there are extreme cases in which
our methods might transform the noisy matrix into an invalid
kernel matrix, we do not expect these problems to play any
role because such extreme noise levels likely would render
the QPU output useless.

Note that the error bound in operator distance derived in
Sec. V C is valid for the deviation of the statistical estimator
from the noiseless kernel matrix K or from the device-noisy
kernel matrix K(dev). When applying post-processing meth-
ods however, this bound may not transfer to the outputK(post)

in general. Consequently, while being designed to counter de-
vice and finite sampling noise, the analytic error bound might
become worse.

For R-THR however, this bound is provably maintained
[73]: Splitting the indefinite matrix K̄M into the difference of
two positive semi-definite matrices K+ and K− with disjoint
support, identifying R-THR(K̄M ) = K+ and calculating the
distance between the approximand7 and K̄M yields

K̄M =:K+ −K− (B2)

‖K − K̄M‖∞ =‖K −K+ +K−‖∞ (B3)

= max
‖x‖2=1

[xT (K −K+)2x (B4)

+ xT (KK− +K−K +K2
−)x︸ ︷︷ ︸

≥0

]

≥ max
‖x‖2=1

xT (K −K+)2x (B5)

=‖K −K+‖∞ (B6)

=‖K − R-THR(K̄M )‖∞ (B7)

7 We here show the calculation when approximating K. It has to be replaced
by K(dev) accordingly when approximating the device-noisy matrix by
sampling.

where we used the positive semi-definiteness of K− and that
K±K∓ = 0 due to the disjoint support.

2. Comparison of post-processing strategies

There are many combinations of the post-processing tech-
niques to choose from in order to counter both device noise
and finite sampling noise.

First, we apply a regularization R1, including the option to
not modify K(dev) at all (Id). Second, we perform device
noise mitigation M and third, we regularize again with R2.

For the two regularization steps R1,2, we may apply
Tikhonov regularization (R-TIK), thresholding (R-THR) or
the semi-definite program (SDP) fixing the diagonal while
thresholding (R-SDP), see Sec. V D. For the mitigation step,
we choose from single survival probability estimation based
on a single (M-SINGLE) or the mean (M-MEAN) diagonal
entry of K̄M , and survival probability estimation per feature
embedding (M-SPLIT), see Sec. V B.

Naively, this yields 64 combinations when including the
trivial transformation Id, out of which some are identical, e.g.
Id, Id,R and R, Id, Id. In addition, there are special combi-
nations in which methods effectively act like Id: First, com-
binations of the form R-SDP,M,R2 for which M already re-
ceives a positive semi-definite input matrix with correct diag-
onal entries and thus will estimate the survival probability to
be 1. Second, some combinations without mitigation (namely
R-TIK/R-THR, Id,R-TIK/R-THR) in which R2 would be re-
dundant. Here we already excluded the combinations obeying
the first pattern. Excluding duplicates and these “reducible”
combinations, we obtain 42 reasonable, distinct strategies (in-
cluding Id, Id, Id) and for each of the outcomes K(post) we
compute the kernel alignment (see Eq. 26) with the noiseless
matrix K.

In Fig. 10 we only showed the best out of the resulting
42 combinations, rated by the lowest alignment across all
base survival probabilities and numbers of circuit evaluations.
This best combination is a single application of R-THR (see
Eq. (48)), not making use of any mitigation or the second reg-
ularization step. However, we note that the influence of sam-
pling noise is rather large in the chosen domains of M and
λ0, such that the rating by lowest achieved accuracy favors
methods that are designed to counter sampling noise, such as
R-THR.

Choosing the strategy in this way, our post-processing in-
creases the alignment significantly (by up to 43.5%, in the
regime of small M ) and systematically (only negligible dete-
rioration for M → ∞), allowing for an improved estimate of
the kernel matrix with fewer circuit evaluations.

In Fig. 12 we evaluate the combinations of regularization
and mitigation in more detail and it becomes apparent that
the best choice depends on the noise regime. We immedi-
ately see that in the domain of high noise (small numbers of
circuit evaluations and lower survival probability, lower right)
the result of our simple ranking in Sec. VII B is confirmed and
thresholding consistently is the best post-processing method
(combination 3).
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Figure 12. Relative improvement q in alignment (see Eq. (52)) between noisy and noiseless kernel matrices as in Fig. 10 but for the best
combination of post-processing steps per point. We vary the base survival probability λ0 of the depolarizing noise model (see Sec. C 5) and
the number of circuit evaluations M per kernel matrix entry, including the analytically exact limit M → ∞ in the first row. For details on
the noise mitigation and regularization methods see Sec. V B and V D, respectively. Black solid lines separate areas within which the same
combination is best, the numbers label the combinations.

When increasing M while at the lower device noise level,
Tikhonov regularization becomes more favorable than thresh-
olding and still no device noise mitigation method is able to
improve the matrix further (combination 2). This is remark-
able because our combinations would allow for multiple pro-
cessing steps to counter both, sampling and device noise.

For higher λ0 we observe high variation in which combi-
nation is best, because many of them yield very similar align-
ments with the exact matrix so that statistical fluctuations be-
come relevant. However, for the majority of these datapoints
with higher survival probabilities, the combination of single
probability estimation based on a single or the mean of the ma-
trix diagonal (M-SINGLE/M-MEAN) followed by SDP-based
regularization (R-SDP) is best (combinations 9 and 10).

Finally, for matrices without sampling noise our device
noise mitigation techniques combined with Tikhonov regular-
ization are the best choice, delivering far better results than
simple regularization (combinations 5 and 8). This indeed
confirms that the high-level noise model of global depolariza-
tion, on which the mitigation techniques are based, is able to
grasp some of the essential influence the device noise (of our
more realistic depolarizing noise model) has. Here the single
probability estimation M-SINGLE seems to be better suited
for lower survival probabilities and M-SPLIT for higher λ0.

The complex appearance of Fig. 12 underlines that the best

choice of post-processing depends significantly on the noise
level in the device and – in relation to this level – how many
circuit evaluations are used for the kernel evaluation, so one
should choose the method carefully. The benefit of doing so
compared to the first, simple rating in Sec. VII B is an increase
of the best achieved alignment improvement q from 43.5% to
84.6% (or even to 90.2% when considering the results without
sampling noise in the first row of Fig. 12).

Finally, we note that the ranking of the post-processing
combinations based on the alignment of K(post) with the
noiseless kernel matrix K is not possible in applications that
truely require the QPU, as K is not available in this case. In-
stead one could evaluate the restored matrices based on their
alignment with the ideal target matrix K∗. We compared the
ranking resulting from this idea with the one presented above
and did not find any systematic relations between them, so that
this application-oriented surrogate method to reconstruct K
may be discarded. Whether it provides a better kernel matrix
for classification is an open question, but if K∗ was optimal,
there would not be any use in computing K from the start.

We conclude that choosing the post-processing in practice
remains challenging and requires a systematic analysis of both
finite sampling and device noise effects on larger-scale kernel
matrices.
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Appendix C: Additional information on numerical experiments

1. Checkerboard

The checkerboard dataset is used for testing our error miti-
gation techniques for medium size kernels on a classical sim-
ulator, as well as for the noiseless simulation experiment. The
dataset consists of 30 training and 30 test datapoints, and was
generated as follows. In the domain [0, 1]2 get a 4 × 4 grid
with sites i, j at coordinates ((2i + 1)/8, (2j + 1)/8) to pre-
vent overlap between centroids and spilling out of the fixed
domain. Next, we sampled points uniformly centered about
each grid site. At the end, we assigned alternating classes
to each of the sites, and finished by assigning all swarms of
points the class corresponding to their centroid.

2. Symmetric donuts

The symmetric donuts dataset ought to set the grounds for
running a smaller kernel on actual quantum hardware. This
artificial dataset has the same size as the previous one: 60
training and 60 test datapoints. The datapoints are generated
by sampling points uniformly at random from a circle of ra-
dius
√

2/2 and then labeling them according to whether they
fall within an inner circle of radius 1/2 or without. We do
this one time centering the circles on the x-axis, on the point
(1, 0), giving the inner points label 1 and the outer ones la-
bel −1. Next, we repeat the process for circles centered about
the point (−1, 0) and this time exchange the labels: the inner
point class is now −1 and the outer +1. This way we obtain a
dataset contained in the domain [−(3+

√
2)/2, (3+

√
2)/2]×

[−
√

2/2,
√

2/2].

3. Semi-artificial MNIST

Moving our experiment closer to real-world data, we have
also considered MNIST images. This dataset contains hand-
written digits in images that have dimensions of 28x28 and a
gray-scale from zero to 255, which we normalize to the range
from zero to one. To construct a semi-artificial dataset, we
have randomly chosen 500 images with labels of zero and
one each, sampled three pixels with gray-scale values larger
than 0.95 from each, and added all these coordinates to con-
struct “zero-base” and “one-base” sets. We then constructed
the dataset “zero” by selecting all coordinates in “zero-base”
that are not contained in “one-base” and analogously for the
dataset “one”. The dataset “non-zero” is a copy of dataset
“one-base”, “non-one” is a copy of dataset “zero-base”. The
datasets are shown in the top six plots of Fig. 13.

4. Ensemble MNIST

We previously used the semi-artificial MNIST dataset to
train a classifier for classifying single pixel coordinates from

zero-base one-base

zero one

non-zero non-one

sampled zero sampled one

Figure 13. Various subsets of the MNIST dataset. All images appear
rotated 90 degrees counter-clockwise.

a combined pool of 500 images belonging to an image labeled
zero (one) or not. We now use several of these classifiers in
an ensemble, to classify “zero vs one” for individual images.
This classification is done via the following steps: First, we
sample 15 pixels with a gray-scale value larger than 0.95 from
our image, and store them as coordinates. This is shown in the
bottom two plots of Fig. 13. We then use the trained kernel
classifiers to classify “zero” vs. “not zero” and “one” vs. “not
one”. Finally, we perform a majority vote for each coordinate.
If the relative vote wins by less than two votes, we re-run our
method with newly sampled points.

5. Simulating device noise by depolarization

For the simulation of device noise in Sec. VII B we use
the following noise model: After each unitary gate we apply
single-qubit depolarizing noise channels Dλ to each qubit the
gate acted on (see Eq. (29) with N = 1).
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Recalling the discussion in Sec. V A, we remark that the
qubit-wise depolarizing channel does commute with single-
qubit but not with multi-qubit gates like the ring of controlled
gates in our embedding circuit. In this sense our model prop-
erly captures the case in which the device noise invalidates
the adjoint approach, potentially destroying the positive semi-
definiteness of the kernel matrix, and our post-processing
strategies are challenged to correct this deviation.

The base survival probability λ0 quantifies the overall noise
strength. However, it is reasonable to expect that the noise
strength for a specific gate on a QPU depends on the dura-
tion of the pulses that implement the gate, leading to different
effective noise levels for different embedded datapoints. In
order to capture this dependence, we rescale the base survival
probability λ0 for a rotation gate about the angle θ according
to

λ =

(
1− θ

2π

)
+ λ0

θ

2π
(C1)

and fix the survival probability of the Hadamard and idling
gate to (1 + λ0)/2 and (1 + 3λ0)/4, respectively.

We do not simulate any device readout error explicitly but
assume the presented implementation of depolarizing noise to
represent the full device noise closely enough. This assump-
tion seems to be valid considering our results in Secs. VII B
and VII C and the accordance between them.

Appendix D: CO2 emission table

Numerical simulations
Total Kernel Hours [h] 7250
Thermal Design Power Per Kernel [W] 4.6
Total Energy Consumption Simulations [kWh] 32.8
Average Emission Of CO2 In Germany/USA [kg/kWh] 0.47
Total CO2-Emission For Numerical Simulations [kg] 15.5
Estimated CO2-Emission For QPU usage [kg] 21.4
Were The Emissions Offset? Yes
Total CO2-Emission [kg] 36.9
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