dc.contributor.author
Randall, Ricardo S.
dc.contributor.author
Jourdain, Claire
dc.contributor.author
Nowicka, Anna
dc.contributor.author
Kaduchová, Kateřina
dc.contributor.author
Kubová, Michaela
dc.contributor.author
Ayoub, Mohammad A.
dc.contributor.author
Schubert, Veit
dc.contributor.author
Tatout, Christophe
dc.contributor.author
Kalyanikrishna
dc.contributor.author
Schubert, Daniel
dc.date.accessioned
2023-02-20T09:52:46Z
dc.date.available
2023-02-20T09:52:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38001
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37717
dc.description.abstract
Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
3D organization
en
dc.subject
spatial distribution
en
dc.subject
image analysis
en
dc.subject
segmentation
en
dc.subject
quantification
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/19491034.2022.2144013
dcterms.bibliographicCitation.journaltitle
Nucleus
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
277
dcterms.bibliographicCitation.pageend
299
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1080/19491034.2022.2144013
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1949-1042
refubium.resourceType.provider
WoS-Alert