dc.contributor.author
Chew, Ray
dc.contributor.author
Benacchio, Tommaso
dc.contributor.author
Hastermann, Gottfried
dc.contributor.author
Klein, Rupert
dc.date.accessioned
2023-01-16T07:29:25Z
dc.date.available
2023-01-16T07:29:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37592
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37307
dc.description.abstract
A challenge arising from the local Bayesian assimilation of data in an atmospheric flow simulation is the imbalances it may introduce. Acoustic fast-mode imbalances of the order of the slower dynamics can be negated by employing a blended numerical model with seamless access to the compressible and the soundproof pseudo-incompressible dynamics. Here, the blended modeling strategy by Benacchio et al. is upgraded in an advanced numerical framework and extended with a Bayesian local ensemble data assimilation method. Upon assimilation of data, the model configuration is switched to the pseudo-incompressible regime for one time step. After that, the model configuration is switched back to the compressible model for the duration of the assimilation window. The switching between model regimes is repeated for each subsequent assimilation window. An improved blending strategy for the numerical model ensures that a single time step in the pseudo-incompressible regime is sufficient to suppress imbalances coming from the initialization and data assimilation. This improvement is based on three innovations: (i) the association of pressure fields computed at different stages of the numerical integration with actual time levels, (ii) a conversion of pressure-related variables between the model regimes derived from low Mach number asymptotics, and (iii) a judicious selection of the pressure variables used in converting numerical model states when a switch of models occurs. Idealized two-dimensional traveling vortex and buoyancy-driven bubble convection experiments show that acoustic imbalances arising from data assimilation can be eliminated by using this blended model, thereby achieving balanced analysis fields.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Filtering techniques
en
dc.subject
Kalman filters
en
dc.subject
Numerical analysis/modeling
en
dc.subject
Anelastic models
en
dc.subject
Data assimilation
en
dc.subject
Idealized models
en
dc.subject
Nonhydrostatic models
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
A One-Step Blended Soundproof-Compressible Model with Balanced Data Assimilation: Theory and Idealized Tests
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1175/MWR-D-21-0175.1
dcterms.bibliographicCitation.journaltitle
Monthly Weather Review
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.pagestart
2231
dcterms.bibliographicCitation.pageend
2254
dcterms.bibliographicCitation.volume
150
dcterms.bibliographicCitation.url
https://doi.org/10.1175/MWR-D-21-0175.1
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-0493
refubium.resourceType.provider
WoS-Alert