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ABSTRACT: A challenge arising from the local Bayesian assimilation of data in an atmospheric flow simulation is the im-
balances it may introduce. Acoustic fast-mode imbalances of the order of the slower dynamics can be negated by employ-
ing a blended numerical model with seamless access to the compressible and the soundproof pseudo-incompressible
dynamics. Here, the blended modeling strategy by Benacchio et al. is upgraded in an advanced numerical framework and
extended with a Bayesian local ensemble data assimilation method. Upon assimilation of data, the model configuration is
switched to the pseudo-incompressible regime for one time step. After that, the model configuration is switched back to
the compressible model for the duration of the assimilation window. The switching between model regimes is repeated for
each subsequent assimilation window. An improved blending strategy for the numerical model ensures that a single time
step in the pseudo-incompressible regime is sufficient to suppress imbalances coming from the initialization and data assim-
ilation. This improvement is based on three innovations: (i) the association of pressure fields computed at different stages
of the numerical integration with actual time levels, (ii) a conversion of pressure-related variables between the model re-
gimes derived from low Mach number asymptotics, and (iii) a judicious selection of the pressure variables used in convert-
ing numerical model states when a switch of models occurs. Idealized two-dimensional traveling vortex and buoyancy-
driven bubble convection experiments show that acoustic imbalances arising from data assimilation can be eliminated by
using this blended model, thereby achieving balanced analysis fields.

SIGNIFICANCE STATEMENT: Weather forecasting models use a combination of physics-based algorithms and
meteorological measurements. A problem with combining outputs from the model with measurements of the atmo-
sphere is that insignificant signals may generate noise and compromise the physical soundness of weather-relevant pro-
cesses. By selecting atmospheric processes through the toggling of parameters in a mixed model, we propose to
suppress the undesirable signals in an efficient way and retain the physical features of solutions produced by the model.
The approach is validated here for acoustic imbalances using a compressible/pseudo-incompressible model pair. This
development has the potential to improve the techniques used to bring observations into models and with them the
quality of atmospheric model output.

KEYWORDS: Atmosphere; Filtering techniques; Kalman filters; Numerical analysis/modeling; Anelastic models;
Data assimilation; Ensembles; Idealized models; Nonhydrostatic models

1. Introduction

a. Motivation

Dynamical processes in the atmosphere evolve on a range
of spatiotemporal scales, most comprehensively expressed by
the full compressible flow equations. Limit regimes, derived
from the full compressible flow equations by scale analysis
and asymptotics, describe reduced dynamics, examples being
the soundproof anelastic and pseudo-incompressible models
traditionally used at small- to mesoscale, and the hydrostatic

primitive equations at large to planetary scales (Pedlosky
2013; Vallis 2017; Klein 2010).

To access the dynamics of the full compressible flow equa-
tions and of their limit regimes, separate numerical schemes
can be developed for each of the limiting models. From a
computational perspective, however, the discrepancies be-
tween numerical solutions of different equation sets obtained
by essentially the same numerical scheme can be substantially
smaller than the discrepancies associated with the solution of
one and the same equation set by different numerical schemes
(Smolarkiewicz and Dörnbrack 2008; Klein 2009).

Benacchio et al. (2014), Klein et al. (2014), and, separately,
Smolarkiewicz et al. (2014) developed discretization schemes
for the compressible equations that allow access to the pseudo-
incompressible model within a single numerical framework,
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showing equivalent results of both configurations in small- to
mesoscale tests involving acoustically balanced flows. The
blended analytical and numerical framework in Benacchio et al.
(2014) and Klein et al. (2014), within which the compressible to
pseudo-incompressible transition is realized as a continuum of
models controlled by an appropriate blending parameter, was
conceptually extended in Klein and Benacchio (2016) to include
access to hydrostatic models. Benacchio and Klein (2019) then
proposed a numerical implementation and achieved equiva-
lence of hydrostatic and nonhydrostatic model solutions on
large scales in the absence of vertically propagating acoustic
modes.

Balanced data assimilation provides a key motivation for
blended numerical models. A problem with local data assimila-
tion is the imbalance that it may induce (Lorenc 2003). As the
assimilation procedure does not take heed of specific character-
istics of a flow, such as conservation of mass, momentum, and
energy, or of particular smoothness properties, the initial bal-
ance of a flow state may be destroyed by the assimilation proce-
dure, see Neef et al. (2006) and more specifically Greybush
et al. (2011) and Bannister (2015) on the effects of localization
on balanced analysis fields.

Physically, local data assimilation in a compressible frame-
work can introduce imbalances through fast acoustic modes
with velocity amplitudes that may be of the same order of
magnitude as the velocities found in the slowly evolving bal-
anced dynamics of interest, with potentially destructive effects
on overall solution quality (Hohenegger and Schär 2007).
Judicious use of a blended soundproof-compressible model
can be employed to counteract this effect. Imbalances inher-
ent in the initial pressure fields can be effectively reduced by
solving the initial time steps of a simulation in the pseudo-in-
compressible regime so that, upon the subsequent transition
to the compressible regime over several further time steps,
the pressure field is balanced with respect to the initial veloci-
ties and potential temperature fields (Benacchio et al. 2014;
Klein et al. 2014). More specifically, the algorithm leverages a
discrete projection of the velocity field onto the space of
pseudo-incompressible solutions that is orthogonal in a L2-
inner product weighted by the mass-weighted potential
temperature, up to numerical truncation errors. Additional
measures guarantee that the pressure field, too, corresponds
to the physically correct pseudo-incompressible pressure and
not to the Lagrange multiplier calculated as part of the projec-
tion. Therefore, the scheme provides the ensemble of bal-
anced solutions closest to the analysis ensemble with respect
to the norm induced by the mentioned inner product.

By extension of this insight, when mounting data assimilation
on the numerics, a projection of the solution onto the sound-
proof pseudo-incompressible model can suppress the fast
acoustic modes arising from the assimilation procedure. After
suppression of the fast modes, the remaining time steps until
the next assimilation procedure are solved with the compress-
ible model. As this method makes use of the different dynam-
ics modeled by the compressible and soundproof equation
sets, it fundamentally deviates from existing methods to han-
dle initialization problems such as the post-analysis digital fil-
ter (DFI; e.g., Lynch and Huang 1992) and the incremental

analysis update (IAU; Bloom et al. 1996). These techniques
act as low-pass filters, and repeated application of the filter
may have undesirable effects on long-term dynamics (Houte-
kamer and Zhang 2016; Polavarapu et al. 2004).

Balance was also shown to improve with the choice of local-
ization space (Kepert 2009) and by allowing observations out-
side of a localization radius to relax to a climatological mean
(Flowerdew 2015). Hastermann et al. (2021) compared the ef-
fects of the blending approach with those of the postanalysis
penalty method in achieving balanced analysis fields for highly
oscillatory systems and found comparable improvements for
both methods in the case of nonlinear balance relations. See
also Zupanski (2009) and Houtekamer and Zhang (2016) for
reviews of balanced atmospheric data assimilation.

b. Contributions

This paper proposes a dynamics-driven method to achieve
balanced data assimilation using a blended numerical frame-
work with the following advances:

• One-step blending of the pseudo-incompressible and com-
pressible models by instantaneous switching. This is achieved
by (i) accounting for the fact that Exner pressure fields com-
puted at comparable stages within a time step correspond to
different time levels in the compressible and soundproof
model; (ii) judiciously converting the thermodynamic varia-
bles between the compressible and soundproof models moti-
vated by low Mach number asymptotic arguments; and (iii)
carefully selecting, based on steps (i) and (ii), the pressure
variables used in converting numerical model states at the
blending time interfaces. One-step blending is a sizeable im-
provement over Benacchio et al. (2014), who needed several
intermediate time steps for the blending procedure.

• Exploitation of the blended framework for balanced ensem-
ble data assimilation. We employ an untuned data assimila-
tion scheme that is known to introduce imbalances. After
each assimilation of data, a single time step in the pseudo-
incompressible model configuration is used to suppress the
fast acoustic imbalances. The model configuration is then
switched back to the compressible model. In the reported ide-
alized experiments, balanced analysis fields are obtained by
combining data assimilation and blending, thus verifying the
ability of the blended model to handle imbalances consistently
with the underlying compressible and soundproof dynamics.

The effects of data assimilation and blending on balanced
solutions are investigated in the two-dimensional numerical
experiments of a traveling vortex and of a rising thermal in a
vertical slice (see Kadioglu et al. 2008; Mendez-Nunez and
Carroll 1994; Klein 2009). For these tests, unbalanced and un-
tuned data assimilation is shown here to destroy solution
quality, while the use of blending effectively recovers the
structure of the solution as evaluated by comparison with
runs without data assimilation. Moreover, with the balanced
data assimilation procedure, the solution quality of the ob-
served quantities is maintained or improved independently
of the size of the localization region, which is an important
tunable parameter of many sequential data assimilation
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procedures. The order of magnitude of the imbalances intro-
duced by data assimilation in these idealized test cases is
quantified by scale analysis.

The paper is structured as follows. Section 2 contains a brief
introduction to data assimilation and the Kalman filters con-
sidered here. Section 3 reviews the blended numerical frame-
work. Section 4 proposes the new blending scheme and section 5
details the results of numerical experiments. The effectiveness of
the one-step blended soundproof-compressible scheme is investi-
gated for balanced data initialization in section 5a, and its appli-
cation toward balanced data assimilation in section 5c. Section 6
contains a discussion and the conclusions.

2. Data assimilation: A quick primer

Data assimilation is used in numerical weather prediction
to improve forecasting. Existing approaches include 4D-Var,
which optimizes model states over a finite time horizon in the
past before launching a newprediction, and sequential assimilation
procedures, which assimilate the available observations at specific
points in time. Here we focus on the latter, which aremore suscep-
tible to the problem of imbalances addressed in this paper due to
the local nature of these methods and especially when the localiza-
tion is severe (Cohn et al. 1998;Mitchell et al. 2002).

Modern weather forecasting techniques aim to represent
the uncertainty of a forecast by generating an ensemble of
likely candidates of model states. Such an ensemble can be
understood as an approximate representation of a probability
distribution over model states. The task of sequential data as-
similation is then as follows. Suppose we are given the proba-
bilistic weight of each ensemble member at a previous
instance in time, i.e., at the beginning of the current simula-
tion window, together with the forward simulation states of
all ensemble members at the current time, i.e., at the end of
the simulation window. Then the prior probability distribu-
tion pdfprior is represented by the model states at the new
time level together with their probabilistic weights inherited
from the beginning of the simulation window. Now we are to
readjust the current states or the probabilistic weights of the
ensemble members, at fixed time, such that the resulting pos-
terior probability distribution pdfpost best reflects the observa-
tions that have arrived during the simulation window.

The connection between pdfprior and pdfpost can be estab-
lished in a Bayesian framework. For this purpose we assume
no model error and xtruth to be a perfectly resolved, true
model state. We denote the observation operator by H .
Then, observations that have arrived during the simulation
window are subject to Gaussian distributed noise � and satisfy

yobs � H (xtruth) 1 �: (1)

Now Bayes’s theorem gives

pdfpost(x) � pdf(x|yobs) �
pdf(yobs|x)
pdf(yobs)

pdfprior(x): (2)

Here pdf(x|yobs) is the conditional probability of state x given
the observations yobs and pdf(yobs|x) is the probability of

observation yobs given the state x. The right-hand side of
Eq. (2) is computable given the information before the data
assimilation step, noting that the best available estimate of
pdf(yobs) is the expectation of pdf(yobs|x) with respect to x un-
der the prior probability distribution. See Wikle and Berliner
(2007) and Reich and Cotter (2013) for more details on
Bayesian data assimilation.

The Kalman filters

Kalman filters are a family of popular Bayesian-based data
assimilation methods (Kalman 1960) that assumes Gaussian
shape for all probability densities so that they can be fully
characterized by their means and covariance matrices. Identi-
fying the prior with the term forecast (f), and the posterior
with the term analysis (a), the Kalman filter is

xa � xf 1 BH T(HBH T 1 R)21[yobs 2 H (xf )]
� xf 1 K[yobs 2 H (xf )], (3)

where B ∈Rm3m and R ∈Rl3l are the covariance matrices asso-
ciated with the forecast and observations, respectively. The m
and l variables represent the dimension of the state and obser-
vation spaces. The term K is the Kalman gain, which rewards
the forecast if ‖B‖ ,, ‖R‖ and penalizes it if ‖R‖ ,, ‖B‖,
where ‖·‖ is a suitable norm.

A class of Monte Carlo–based Kalman filters, the ensemble
Kalman filters, avoid the problem of high dimensionality by
approximating the underlying probability density functions
through the empirical distributions given by an ensemble of
individual simulation states (Reich and Cotter 2015). As a
consequence, ensemble-based methods are often computa-
tionally more efficient than any scheme that aims to explicitly
describe entire probability density functions.

Specifically, for an ensemble of size K, the ensemble fore-
cast is {xf1,…,xfK} and the ensemble’s parametric information
specifying its probability distribution is updated by

xa � xf 1 Kens[yobs 2 H (xf )], (4a)

Pa
K � P

f
K 2 KensHP

f
K, (4b)

Kens � P
f
KH

T(HP
f
KH

T 1 R)21, (4c)

where xa/f is the ensemble mean and P
a/f
K ∈RK3K is the

covariance associated with the ensemble.
A drawback to the ensemble Kalman filter is that the covari-

ance is determined by the spread of the ensemble and is therefore
typically underestimated. However, ensemble inflation can be ap-
plied by multiplying the ensemble covariance by a constant factor
larger than 1. This increases the covariance in the direction of the
ensemble spread (Anderson 2007; VanLeeuwen et al. 2015).

This paper uses the local ensemble transform Kalman filter
(LETKF) data assimilation method (Hunt et al. 2007) based
on the ensemble square root filter (ESRF). The LETKF local-
izes the observation covariance in such a way that observa-
tions farther away from the grid point under analysis have less
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influence, tapering off to zero influence for observations out-
side of a prescribed observation radius. The algorithm for the
LETKF is provided in appendix A.

Localization prevents spurious correlations of faraway ob-
servations while potentially reducing the complexity of the
problem by making the observation covariance matrix closer
to diagonal (Hamill et al. 2001; Houtekamer and Mitchell
1998). After localization, the analysis is only performed on a
smaller local region, and the global analysis ensemble comprises
different linear combinations of the ensemble members in each
of these local regions. This allows the ensemble to represent a
higher-dimensional space than one constrained by the ensemble
size (Fukumori 2002; Mitchell et al. 2002). A smaller ensemble
size may necessitate more severe localization.

When applying the LETKF, there are two potential sources
for imbalances. In the case of a nonlinear balance relation,
the LETKF fails to recover the desired balance due to its local
linear construction. Even without localization and for a given
observation, the analysis ensemble of the ESRF is obtained as
a linear combination of the forecast ensemble. In the case of
linear balances, the situation is more subtle. On one hand the
ESRF without localization is capable of resolving linear balan-
ces due to its linear construction. On the other hand the
LETKF, utilizing localization, does not act as a linear map on
the global fields and therefore does not necessarily preserve
the balance relation. Numerical experiments in this paper in-
vestigate imbalances arising from both these sources.

A smooth localization function, such as the truncated
Gaussian function or the Gaspari and Cohn (1999) function,
may be used to keep the resulting fields sufficiently smooth.

3. The blended numerical model

a. Governing equations

In a rotating three-dimensional Cartesian domain, the adia-
batic, dry compressible fluid flow equations for an ideal gas
under gravity are as follows:

rt 1 =‖ · (ru) 1 (rw)z � 0, (5a)

(ru)t 1 =‖ · (ru 8 u) 1 (rwu)z � 2 [cpP=‖p 1 fk 3 ru],
(5b)

(rw)t 1 =‖ · (ruw) 1 (rw2)z � 2(cPPpz 1 rg), (5c)

aPPt 1 =‖ · (Pu) 1 (Pw)z � 0, (5d)

where r is the density, u = (u, y) is the vector of horizontal
velocities, w is the vertical velocity, P is the mass-weighted poten-
tial temperature, and p is the Exner pressure. The variable f is
the Coriolis parameter on the horizontal (x, y) plane, k is a unit
vector in the vertical direction, and 3 represents the cross prod-
uct. The term g is the acceleration of gravity acting in the direc-
tion of k; the 8 denotes the tensor product and =‖ denotes the
horizontal gradient, while the subscripts t and z denote the partial
derivatives with respect to time t and the vertical coordinate z.

The terms p and P are related to the thermodynamic pressure p
by the equation of state:

p � p
pref

( )R/cp
, P � pref

R
p
pref

( )cy /cp � rQ, (6)

where pref is a reference pressure; cp and cy are the heat
capacities at constant pressure and constant volume, respec-
tively; R = cp 2 cy is the ideal gas constant; andQ is the potential
temperature. The parameter aP tunes between the compressible
and the pseudo-incompressible model (Durran 1989; Klein et al.
2010).

Identifying x with the inverse potential temperature:

x � 1
Q
, (7)

the Exner pressure and inverse potential temperature can be
decomposed as

p � p 1 p′, and (8a)

x � x 1 x′, (8b)

where the bar denotes a hydrostatic background state,
which depends only on the vertical coordinate, and the
prime denotes the perturbation. Rewriting (5) with (7) yields

rt 1 =‖ · (Pux) 1 (Pwx)z � 0, (9a)

(ru)t 1 =‖ · (Pu 8xu) 1 (Pwxu)z � 2[cpP=‖p 1 fk 3 ru],
(9b)

(rw)t 1 =‖ · (Puxw) 1 (Pwxw)z � 2(cpPpz 1 rg), (9c)

aPPt 1 =|| · (Pu) 1 (Pw)z � 0: (9d)

Using the notation of Smolarkiewicz et al. (2014) and Benacchio
and Klein (2019):

C � (x,xu,xw,x′), (10)

Eq. (9) can be written compactly as

(PC)t 1 A(C; Pv) � Q(C; P), (11a)

aPPt 1 = · (Pv) � 0, (11b)

where v = (u, y, w) subsumes the three-dimensional velocity
fields, A(C; Pv) denotes the advection of the quantity C

given the advective fluxes Pv, while Q(C; P) describes the ef-
fect on the right-hand side of (9) onC given P.

From (6), P is a function of p only,

P(p) � pref
R

p1/(g21), (12)

where g = cp/cy is the isentropic exponent. With (12), (11b)
becomes
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aP

P
p

( )
p′
t � 2= · (Pv): (13)

b. Summary of the numerical scheme

Equation (9d) is discretized in time with an implicit mid-
point method:

aPP
n11 � aPP

n 2 Dt = · (Pv)n11/2: (14)

To obtain the advective fluxes at the half time level, the
time-update for Eqs. (11a) and (11b) is split into advective
and nonadvective terms. The advection terms on the left
are updated by

(PC)# � ADt/2
1st Cn;(Pvn)[ ]

, (15a)

aPP
# � aPP

n 2
Dt
2

=̃ · (Pv)n, (15b)

where =̃ is the discrete divergence and A1st is an advection
scheme corresponding to the half time level update. The
terms on the right are then advanced using an implicit Euler
method:

(PC)n11/2 � (PC)# 1
Dt
2

Q(Cn11/2;Pn11/2), (16a)

aPP
n11/2 � aPP

n 2
Dt
2

=̃ · (Pv)n11/2: (16b)

Expressions (15) and (16) yield the advective fluxes at the half
time level.

Subsequently, the quantities C are updated to the full time
level with an explicit Euler half step followed by a full advec-
tion step and a final implicit Euler half step:

(PC)* � (PC)n 1
Dt
2

Q(Cn;Pn), (17a)

(PC)** � ADt
2nd C*; (Pvn11/2)[ ]

, (17b)

(PC)n11 � (PC)** 1 Dt
2

Q(Cn11;Pn11), (17c)

aPP
n11 � aPP

n 2 Dt=̃ · (Pv)n11/2, (17d)

yielding a second-order accurate one-step method (Benacchio
and Klein 2019; Smolarkiewicz 1991; Smolarkiewicz and
Margolin 1993).

A first-order Runge–Kutta method is used for the advec-
tion operator ADt/2

1st in (15a) while second-order Strang split-
ting is used for ADt

2nd in (17b). The former is necessary for
the time-level analysis in section 4 to hold and the latter
guarantees second order in time of the overall scheme. The
spatial discretization of the numerical scheme is based on a
finite volume framework, for more details see section 4 in
Benacchio and Klein (2019).

c. Pseudo-incompressible regime

The switch aP in (5) toggles access to the pseudo-incompressible
model (aP = 0, Durran 1989):

rt 1 =|| · (rv) 1 (rw)z � 0, (18a)

(ru)t 1 =‖ · (ru 8 u) 1 (rwu)z � 2[cpP=p 1 fk 3 ru],
(18b)

(rw)t 1 =‖ · (ruw) 1 (rw2)z � 2(cpPpz 1 rg), (18c)

=‖ · (Pu) 1 (Pw)z � 0, (18d)

where (18d) enforces the soundproof divergence constraint.
See Klein (2009), Klein and Pauluis (2012), and Klein and
Benacchio (2016) for details of this formulation.

4. Single time-step soundproof-compressible transition

In the following, a conversion of pressure-related quanti-
ties, motivated by low Mach number asymptotics and applied
prior to the model transitions, is proposed which allows for
model switching within a single time step.

a. Time level of the pressure-related variables

In the simpler nonrotating case without gravity (g, f = 0),
the update for the momentum equation multiplied by the
potential temperatureQ in (16a) and (17c) read as

(Pv)t � 2cp(PQ)adv=p, (19)

where the superscript “adv” denotes the quantity that becomes
available after the advection substeps (15a) and (17b). Applying
an implicit Euler discretization to (19), we find

(Pv)out � (Pv)in 2 dt cp(PQ)adv=̃pout, (20)

where the superscript “in” denotes the quantities at the time
level corresponding to the start of the time step and “out” at
the end. The term dt # Dt is an arbitrary time step size.

1) THE COMPRESSIBLE EQUATIONS

For the case aP = 1 and using (12), a discretization of the
left-hand side of (13) yields at the half time level:

Pn11/2 2 Pn � ̃P
̃p

( )#
(pn11/2 2 pn), (21)

where (̃P/̃p)# is obtained from P after the advection step at
the half-time level, (15). Substituting (21) into (16b):

̃P
̃p

( )#
(pn11/2 2 pn) � 2

Dt
2

=̃ · (Pv)n11/2: (22)

The right-hand side of (22) is obtained from the update in
(20). In turn, (Pv)in in (20) is the solution of the advection
terms in (15):
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(Pv)in � (Pv)n 2
Dt
2

=̃ · (Pv 8 v)n, (23)

with dt = Dt/2. Identifying out with n 1 1/2 and rearranging,
(22) becomes

̃P
̃p

( )#
pn11/2 2

Dt
2

( )2
=̃ · [ cp(PQ)#=̃pn11/2]

� ̃P
̃p

( )#
pn 2

Dt
2

=̃ · (Pv)n 1
Dt
2

( )2
=̃ · [=̃ · (Pv 8 v)n], (24)

which fixes the time level of p after the half time-step of (15)
and (16) at n1 1/2.

For the full-time stepping of (17), a similar procedure yields

̃P
̃p

( )#
pn11 2

Dt
2

( )2
=̃ · [ cp(PQ)#=̃pn11]

� ̃P
̃p

( )#
pn 2 Dt =̃ · (Pv)n 1

(Dt)2
2

=̃ · [=̃ · (Pv 8 v)n11/2]

1
Dt
2

( )2
=̃ · [cp(PQ)#=̃pn]: (25)

From (24), p is at time level n 1 1/2 after the half-time step-
ping in (16) while (25) starts with p at time level n for the full-
time stepping in (17). Therefore, the time level of p has to be
reset from n 1 1/2 to n after the half time-step in (16) and be-
fore the full time step in (17). Furthermore, the time level of p
after the full time step in (17) is n1 1 as intended.

2) THE PSEUDO-INCOMPRESSIBLE EQUATIONS

For aP = 0, the coupling between P and p in (13) no longer
holds and the two variables decouple, leading to

= · (Pv) � 0: (26)

Enforcing this divergence constraint for the left-hand side of
(20), we obtain

=̃ · (Pv)in � =̃ · [dt cp(PQ)adv=̃pout]: (27)

At the half-time level, (Pv)in is the solution of (15) comprising
the half time-step advection. Therefore,

=̃ · (Pv)in � =̃ · (Pv)n 1
Dt
2

̃t (Pv)#
[ ]

, (28)

where ̃t is the discrete partial time derivative. As the second
term is generated by (15) starting at time level n, i.e., by an
explicit advection step associated with the left-hand side of
(9b) and (9c) multiplied by Q:

t
∼ (Pv)# 1 =̃ · (Pv · v)n � 0, (29)

Eq (28) becomes

=̃ · (Pv)in � =̃ · (Pv)n 2
Dt
2

=̃ · [=̃ · (Pv 8 v)n]· (30)

Inserting (30) back into (27), with dt = Dt/2:

=̃ · Dt
2

cp(PQ)n=̃pn

[ ]
� =̃ · (Pv)n 2

Dt
2

=̃ · [=̃ · (Pv 8 v)n],
(31)

where the right-hand side has fixed the time level of pout and
adv at n. Equations (31) and (20) constitute a projection step
that yields a divergence-free (Pv)n11/2. The pn solution in (31)
is a compromise between controlling the divergence in =̃ ·
(Pv)n and making a time step of size Dt/2 to find a reasonable
approximation of a pressure field obeying the nonlinear
acoustic balance relation. Such a compromise may be avoided
by introducing an additional projection step to recover a
divergence-free (Pv)n* before (31) is invoked on the basis of
(Pv)n*. However, this is not done in practice, as the projection
step outlined in Eqs. (31) and (20) is adequate in achieving
balanced solutions for the idealized experiments in this paper.

For the full time stepping, (Pv)in is the solution of (17b)
and so (27) is

=̃ · (Pv)** � =̃ · Dt
2

cp(PQ)**=̃pout

[ ]
, (32)

with

=̃ · (Pv)** � =̃ · (Pv)n 2
Dt
2

cp(PQ)n=̃pn 1 Dt̃t (Pv)**
[ ]

,

(33)

where the second term in the square brackets is a contribution
from the explicit substep in (17a), and the third term is obtained
as a result of the advection substep at the full time level.
Substitute (31) into (33):

=̃ · (Pv)** � =̃ · Dt
2

=̃ · (Pv 8 v)n 1 Dtt
∼ (Pv)**

[ ]
, (34)

and note that advection substep (17b) solves the left-hand
side of (9b) and (9c) multiplied with Q:

t
∼ (Pv)** 1 =̃ · (Pv 8 v)n11/2 � 0, (35)

where the half-time level of the second term emerges from
the solution of substeps (17a) and (17b) under the advecting
fluxes (Pv)n11/2. Putting (34) and (35) together and inserting
the result back into (32) gives

=̃ · cp(PQ)**=̃pn11
[ ]

� 2 1 1
Dt
2

t
∼

( )
=̃ · =̃ · (Pv 8 v)n11/2

[ ]
,

(36)

fixing the time level of pout at n 1 1, since the right-hand side
is a half time-step advancement from the n1 1/2 time level.
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In contrast to the compressible case, expressions (31) and
(36) imply that Exner pressure p after the half-step (15) and
(16) is at the time level n, and could be used as the input to
(17) as an alternative to using the Exner pressure obtained at
the end of time step n 2 1. Therefore, p may not have to be
reset to time level n after the half-time predictor for the
pseudo-incompressible solve. Figure 1 summarizes the time-
level analysis of p.

b. Conversion of the pressure-related variables

Expression (8a) separates the background Exner pressure
from its perturbation. For low Mach number flows, Ma ,, 1,
such a separation is naturally induced by the asymptotic
expansion:

p � p(0) 1 Ma2p(1) 1 · · · , (37)

where Ma = uref/cref for reference velocity uref and speed of
sound cref. Substituting (37) into (13) yields

aP

P
p

( )
Ma2p(1)

t � 2= · (Pv), (38)

based on which we can blend the pseudo-incompressible
(aP = 0) and compressible (aP = 1) models. Using (12), the
mass-weighted potential temperature in the compressible
model, Pcomp, and its pseudo-incompressible counterpart,
Ppsinc, are related by

Pcomp � (Pg21
psinc 1 Ma2p′

psinc)1/(g21), (39a)

Ppsinc � (Pg21
comp 2 Ma2p′

comp)1/(g21): (39b)

Therefore, at the blending time interfaces between the
compressible and the pseudo-incompressible configurations,
one of the two expressions in (39) is applied depending on the
direction of the transition.

c. Association of perturbation variables between the
compressible and soundproof models

The time-level analysis of p in section 4a demonstrated
that, in a pseudo-incompressible solve, both the Exner pres-
sure solution after the full time step from tn to tn11 and that

obtained after the subsequent half time-step are associated
with the same time level tn11.

Consider then the compressible to pseudo-incompressible
transition at time n 1 1. The term Pn11

psinc is obtained by
inserting p′n11

comp into the right-hand side of (39b). On the other
hand, there are two valid choices for p′ in a pseudo-incompress-
ible to compressible transition [Fig. 1 and (39a)]: 1) p′

full, i.e.,
p′ obtained after the full n to n 1 1 time step; or 2) p′

half, i.e.,
p′ obtained after the n1 1 to n1 3/2 half time-step.

The p′
half is obtained from the solution of (16) with the solu-

tion of (15) as its input. The input to (15) are Cn and (Pv)n.
This means that p′

half is recovered from the other quantities
and is independent of p at the previous time level, so errors
in the initialization of p are not propagated. By contrast,
p′
full is obtained from the solution of (17). The explicit (17a)

has p as an input to the right-hand side Q(Cn; Pn). There-
fore, p′

full propagates errors in the initialization of p. Note
that choice 2 entails solving an additional time step in the
pseudo-incompressible regime to obtain p′

half at the pseudo-
incompressible to compressible blending time interfaces.

In addition, choice 2 offers a conceptual advantage. The
Exner pressure field in the pseudo-incompressible model is
not controlled by an evolution equation but rather acts as a
Lagrangian multiplier ensuring compliance of the velocity
field with the divergence constraint at some fixed time. Thus,
a direct dependence of the pressure on its previous time level
data, as occurs under option 1), is a numerical artifact that
should be avoided.

d. Data assimilation and blending

A data assimilation engine is used to insert observations in
the fully compressible configuration of the blended numerical
framework. Prior to the assimilation procedure at time tn, the
forecast ensemble state vector {xfk}

n
for k = 1, … , K and a set

of observations ynobs are available. Here, K is the ensemble
size. For vertical slice simulations with the full compressible
flow equations, the ensemble state vector is

{xf1,…x
f
K}

n � {r, ru, rw,P,p′}nk�1,…,K ∈ Rm3K: (40)

Here, the two-dimensional spatial grid has (Nx 3 Nz) cells
and m = (5 3 Nx 3 Nz). The observations of the momentum
fields are

ynobs � {(ru)obs, (rw)obs}n ∈ Rl, (41)

where the subscript “obs” indicates that the data are obtained
externally and are noisy and sparse, and l � 23Nobs(n)

[ ]
,

with Nobs(n) the time-dependent dimension of the sparse
observation space. The observation covariance Rn is deter-
mined by the observation noise.

The forward observation operator H selects for each {xfk}
n

in (40) the momenta (ru)n and (rw)n on the grid points corre-
sponding to the sparse observations, thereby projecting x

f ,n
k

from the state space Rm into observation spaceRl:

y
f ,n
k � H (xf ,nk ) ∈ Rl, k � 1,…,K: (42)

FIG. 1. Time levels of Exner pressurep in the pseudo-incompressible
(psinc) and the compressible (comp) models. The dashed lines
indicate that, from the time-level analysis, the p values are at
the same physical time level between the two models. Arrows
depict the two valid choices of p in the pseudo-incompressible
to compressible blending at time tn and tn11.
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The ensemble mean in observation space is computed as

yf ,n � 1
K

∑K
k�1

y
f ,n
k ∈ Rl: (43)

A similar ensemble averaging is applied to obtain xf ,n. As
observation localization is used in the LETKF algorithm
(Hunt et al. 2007), only observations in a local region surround-
ing a given grid point are involved in its update. A localization
function is furthermore applied to the observations in the local
region (see section 5b and Table 2 for more details on the
setup).

A Kalman gain Kn similar to (4c) is obtained from the obser-
vation operator H , the observation covariance Rn, and an en-
semble inflation factor b. As in the right-hand side of (4a), the
distance of the forecast ensemble mean from the observations is
computed with (41) and (43). From these, a set of K weight
vectors wa

k

{ }n is obtained, applied to (40), and added to xf ,n,
updating the forecast ensemble to the analysis ensemble. Fur-
ther details are given in appendix A.

Once the assimilation procedure is completed, the model
switches to the pseudo-incompressible limit regime and then
back again to fully compressible until the next assimilation
time. The process of switching back and forth between the
model configurations exploits the blended numerical model to
achieve balanced data assimilation and is termed blended
data assimilation.

In particular, if data are assimilated into the compressible
flow equations at time n, then compressible to pseudo-
incompressible blending entails setting the switch aP to 0
and converting the quantity Pcomp with (39b). The solution is
then propagated in the pseudo-incompressible regime for a
time step, after which aP is set back to 1, switching to the com-
pressible flow equations. The quantity Ppsinc is reconverted by
(39a) using either p′

half or p
′
full. Figure 2 summarizes the proce-

dure. Following the analysis from section 4a, the perturbation
variable p′ is reset after the half time-stepping in the solution of
the full model, but not in the solution of the limit model. The
blended data assimilation workflow is displayed in Fig. 3.

As our principal strategy is to split measures of balancing
the flow state from those of assimilating the data, we have not

tuned the data assimilation procedures themselves in any
way. Tuning the data assimilation parameters may further im-
prove balance, but as our balancing strategy is rather success-
ful without tuning, the degrees of freedom of parameter
tuning might be used more efficiently to achieve additional
goals aside from the elimination of unphysical acoustic noise.

5. Numerical results

The idealized test cases of a traveling vortex and a rising
warm air bubble are used to validate model performance in
this section. To evaluate the effectiveness of the single time-
step-blended soundproof-compressible scheme, unbalanced
states are initialized in the compressible flow equations for
both test cases and the blended scheme is applied. The bal-
ance of the compressible solution with unbalanced initial
states is evaluated by “probe measurements,” i.e., by time
series of the flow variables at selected points in the domain,
and compared against analogous data extracted from the
soundproof solution (Benacchio et al. 2014).

For blended ensemble data assimilation, an ensemble is
generated by perturbing the initial conditions. Then, the
blended scheme is applied after the assimilation of observa-
tions into the compressible flow equations and repeated after
each assimilation procedure. The quality of balanced data as-
similation is evaluated by root-mean-square errors with re-
spect to a reference solution.

a. Effectiveness of the improved blending strategy

1) THE TRAVELING VORTEX EXPERIMENT

A stable configuration of the traveling vortex test case of
Kadioglu et al. (2008) with f = 0.0 s21 and g = 0.0 m s22 is con-
sidered in the domain x = [25.0, 5.0] km, z = [25.0, 5.0] km
with doubly periodic boundary conditions and a background
wind with velocity 100 m s21 in both directions (Fig. 4).
Changes made to the initial setup in Kadioglu et al. (2008) are
given in appendix B. The time-step size is constrained by ad-
vective CFL � ‖u‖Dt/Dx � 0:45 on a (64 3 64) grid. This grid
resolution is maintained for all traveling vortex experiments
in this paper. The choice of reference units yields Ma ≈ 0.341.

FIG. 2. Schematic of data assimilation with blending for data assimilated at time tn. Blending
time interfaces are in red, and the time step spent in the pseudo-incompressible regime is shaded.
See main text for full description. Numbers in parentheses refer to equations, and (§) denotes
the section.
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Note, however, that while the background wind Mach number
is relatively large, the superimposed vortex has a maximum
flow velocity of 25 m s21 with Mavort = 0.085, so that the low
Mach number analysis of section 4b is justified.

To gauge the performance of the improved blended model,
probe measurements of the full pressure increments dp are
taken, defined, e.g., at time level n, as

dpn � pn11 2 pn: (44)

at the center (0.0 km, 0.0 km). The first increment dp0 corre-
sponds to a spinup adjustment and is therefore omitted in the
plots, as done in Benacchio et al. (2014).

The distance in the pressure increment result of a given run
compared to the reference pseudo-incompressible run is
quantified by the relative error En,

En �
dpn 2 dppsinc


2dppsinc2 , (45)

where n = b for the blended run and n = c for the imbalanced
compressible run; ‖·‖2 is the 2-norm taken over the probe
measured time series of dp.

An imbalanced initial state is created by setting
P = 347.95 kg m22 K and p = 1.0 over the whole domain for
the full compressible flow equations (5) with aP = 1. For runs
with blending, this imbalanced initial state is propagated for
one time step in the limit pseudo-incompressible regime fol-
lowed by the rest of the time steps in the fully compressible
model. The blending scheme in section 4 is used to transition
between the model regimes.

For this imbalanced initial state, a compressible run with
blending is compared with a compressible run without
blending and with a pseudo-incompressible run (left panel
in Fig. 5). Fast acoustic modes are filtered from the blended
solution and the result is indistinguishable from the limit

pseudo-incompressible reference solution, save for an initial
adjustment in the first time step. Blending is able to recover
the dynamics of the balanced state.

A close-up (right panel of Fig. 5) compares the blended
runs with choices of p′

half and p′
full from section 4c against a

run with the balanced initial state obtained from the
known exact compressible vortex solution. The blended
runs are as good as, and the p′

half run slightly closer to, the
balanced compressible run. The relative error of the
blended run with respect to the reference balanced run is
0.0319 using p′

half and 0.0381 using p′
full, corroborating the

insight from section 4c that p′
half is a better choice. The

choice of p′
half is used from here on for all experiments.

2) THE RISING BUBBLE EXPERIMENT

The second test consists of a gravity-driven thermal flow
with f = 0.0 s21 initialized as a bubble-shaped positive potential
temperature perturbation dQ, on a constant isentropic back-
ground with Q0 = 300 K in a [210.0, 10.0] km 3 [0.0, 10.0] km
domain, with periodic boundaries in x and no flux in z
(Mendez-Nunez and Carroll 1994; Klein 2009; Benacchio et al.
2014). The dimensionless perturbation dQ is defined by

dQ � 2K
Q0

cos
p

2
r

( )
, (46)

where

r � 1
r0

��������������������
x2 1 (z 2 z0)2

√
, (47)

r0 = 2.0 km is the initial radius of the bubble, and z0 = 2.0 km
the initial vertical displacement of the bubble.

The choice of reference units yields Ma ≈ 0.0341. All rising
bubble experiments presented in this paper are run on a grid
with (1603 80) cells to a final simulation time of 1000.0 s.

The initial pressure fields are set to reflect a horizontally
homogeneous hydrostatic pressure field p(z) based on Q0 and
initial condition p(0) � 86:1kPa, with p′ ≡ 0.0 [see (8a)].
These pressure data are imbalanced, however, with respect to
the perturbed initial potential temperature Q0 1 dQ, see (46).
Potential temperature at the initial and final time are depicted
in Fig. 6.

The initial stages of the bubble evolution are compared
for the compressible, pseudo-incompressible and one-step
blended runs in Fig. 7. As the initial state is not hydrostati-
cally balanced, pressure waves propagate in the compress-
ible configuration (top-left panel) as seen in a time series of
pressure perturbation increment probe measurements dp′ at
(x, z) = (27.5, 5) km (orange cross in the top-left panel and
blue line in the top-right panel). Here, p′ � p2 p. The acous-
tics are absent in the soundproof configuration (top-right panel,
black line) and in the single time-step blended soundproof-
compressible configuration (orange dots).

Next, the blended run and the pseudo-incompressible run
are compared in more detail (Fig. 7, middle and bottom
panels) with dp′. The probes are located at (x, z) = (27.5, 5) km
(middle panels) and at (x, z) = (0, 5) km (red cross in the

FIG. 3. Blended data assimilation workflow with the sections (§)
of this paper describing the algorithmic components. The initial
condition (dashed outline) is used only once to start the simula-
tion. For each assimilation window, externally obtained observa-
tions/data are assimilated into the forecast and the algorithm loops
through the components following the direction of the two-headed
arrows.
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top-left panel and bottom panels in Fig. 7), both with a constant
small time step Dt = 1.9 s (top, middle-left, and bottom-left
panels) and for larger, advective CFL-constrained time
steps (middle-right and bottom-right panels, CFL = 0.5 and
Dt = 21.69 s for the first two time steps). Away from the bub-
ble trajectory (middle panels), the pressure perturbation in-
crement due to the rising bubble and the remnants of the
background acoustics from blending are comparable in am-
plitude. Larger amplitudes are observed with the blended
model and the larger time step (middle-right panel), but
they are still very small compared to the fully compressible
run (note the different range on the vertical axes between
the top-right and middle-right panels). On the bubble tra-
jectory (bottom panels), the pressure perturbation incre-
ment due to the rising bubble dominates and the solutions
are almost identical.

Throughout the runs, a single time step spent in the sound-
proof pseudo-incompressible regime largely filters out the fast
acoustic imbalances of the compressible run (not shown in the
middle and bottom panels of Fig. 7). This is quantified by
comparing the relative errors with respect to the reference
pseudo-incompressible run for the compressible run Ec and
for the blended run Eb, defined in (45) and shown in Table 1.
The blended run Eb is more than 25 times smaller than Ec for
the large time-step case, and more than two orders of magni-
tude smaller for the small time-step case.

We also remark that a probe measurement of the full pressure
time increment dp differs slightly between the reference pseudo-
incompressible run and the one-step blended run (not shown).
The difference is due to the time-dependence of the hydrostati-
cally balanced background pressure p in the blended run.

However, the computed values of the pressure perturbation time
increment dp′ are remarkably similar in the two runs (black line
and orange dots in top right panel of Fig. 7).We can thus conclude
that blending recovers balanced dynamics irrespective of small
compressibility-induced variations of the background pressure p.

In view of these results, blending can be employed as an effec-
tive means to achieve the balanced initialization of data within a
fully compressible model. The single time-step balancing capa-
bility in the model presented here substantially improves on the
performance of Klein et al. (2014) and Benacchio et al. (2014),
whose blended models achieved smaller reductions in amplitude
compared to the fully compressible case and needed several
time steps in the limit regime.

b. Ensemble data assimilation and blending: Setup

1) TRAVELING VORTEX SETUP

To combine blending with data assimilation as described in
section 4d, an ensemble is generated by perturbing the initial
vortex center position (xc, zc) within the open half interval
of [21.0, 1.0 km) for both xc and zc. The vortex is then gen-
erated around this center position such that the full vortex
structure is translated. A total of 10 such samples are drawn,
and they constitute the ensemble members. An additional
sample is drawn and solved with the full model for the bal-
anced initial condition. This run, denoted by obs, is used to
generate the artificial observations. Another run with an
identical setup to this additional obs sample is made. This
time, however, blending for the first time step is applied and
this run is considered the truth in the sequel. This is to cor-
rect for any errors in the initialization of p, as discussed in
section 4c.

The choice of generating the truth and obs through a per-
turbation of the initial condition is such that the ensemble
mean does not coincide with the truth. Otherwise, ensemble
deflation alone would be sufficient to make the ensemble con-
verge toward the truth, see also Lang et al. (2017).

The observations are taken from the obs run every 25 s}only
a tenth of the grid points are observed and these are drawn ran-
domly. Sparse observation grid points are randomly drawn as
follows: A Boolean mask selecting for a tenth of the grid points
is generated where if necessary, a ceiling function is applied to
obtain an integer number of grid points selected. The entries of
the mask are then shuffled using the algorithm by Fisher and
Yates (1953), and the Boolean mask is applied to the obs array
to obtain the sparse observations. This framework deviates
from a more realistic situation where observations and grid
points do not coincide. To simulate measurement noise, Gauss-
ian noise with zero mean is added independently to each of the
observed grid points. (The variances used in the experiments
are listed in Table D1 and details on how the variances are com-
puted are given in appendix D.) A similar method of generating
artificial observations by adding independent Gaussian noise
was used in, for example, Bocquet (2011) and Harlim and Hunt
(2005) for the Lorenz-63 and Lorenz-96 models.

The regions for localized data assimilation are of size (113 11)
grid points and only observations within such a patch are con-
sidered for analysis operations at the respective central grid

FIG. 4. Traveling vortex initial balanced states on a (64 3 64)
grid: (top left) Exner pressure perturbation p′, dimensionless con-
tours in the range [25, 0] 3 1024 with interval of 1024; (top right)
horizontal velocity u, contours in the range [72, 128] m s21 with
a 8 m s21 interval; (bottom left) vorticity, contours in the range
[22.2, 2.8] 3 1022 s21 with a 1.0 3 1022 s21 interval; and (bottom
right) potential temperature Q, contours in the range [1.1, 1.9] 3
300 K with a 0.13 300 K interval. Negative contours are dashed.
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point. A localization function corresponding to a truncated
Gaussian function is applied such that observations farther
from the grid point under analysis have less influence, and that
the influence decays smoothly toward the edges of the localiza-
tion subdomain, where it is abruptly truncated to zero. No en-
semble inflation is applied in this case.

Examples of the observations and truths used in the genera-
tion and evaluation of the experiments with data assimilation
are displayed in Fig. 8. Notice that we run one test with obser-
vations of the momentum fields only, and another test with ob-
servations of the full set of variables.

The 10 ensemble members in each of these tests are initial-
ized with balanced states, and blending is applied for the first

time step when the model runs in the pseudo-incompressible
configuration. The ensemble is then solved forward in time
with the fully compressible model. Data from the generated
observations are assimilated every 25 s. The immediate time
step after the assimilation procedure is solved in the pseudo-
incompressible limit regime while the rest of the time steps in
the assimilation window are solved using the full compress-
ible model. Conversions according to the blending scheme
in section 4 are employed when switching back and forth be-
tween the full and limit models. Furthermore, the choice of
p′
half is used (cf. the discussion in section 4c.). The ensemble

solved with both data assimilation and blending is abbrevi-
ated as EnDAB.

The setup is repeated for two additional ensembles and
each observation scenario, one where data are still assimi-
lated but no blending is performed (EnDA), and another
where neither data assimilation nor blending are performed
(EnNoDA). EnNoDA and EnDA constitute an identical
twin experiment (Reich and Cotter 2015; Lang et al. 2017),
through which the effects of data assimilation can be evalu-
ated. EnDA along with EnDAB constitute yet another
identical twin experiment, which evaluates the performance
of blending.

2) RISING BUBBLE SETUP

The rising bubble ensemble spread is generated by ran-
domly modifying the maximum of the potential temperature
perturbation dQ in the open half interval [2.0, 12.0 K). The
ensemble comprises 10 members. While the relative spread
of the temperature perturbation is large with this setup, the
ensemble spread of the bubble position at the final time of
the simulation, tfin = 1000.0 s, is only moderate.

An additional sample is drawn for the obs and the truth,
which are identical in this setup. Blending is applied to the first
time step of the obs and the truth, obtaining a balanced solu-
tion. As the rising bubble flow fields evolve rather slowly in the

FIG. 5. Traveling vortex: Effect of one-step blending for imbalanced initial states on the time series of temporal
increments of the full pressure dp at location (x, z) = (0 km, 0 km). (left) Comparison between a blended run us-
ing p′

half [orange dots; CI-B(H)], a run without blending (blue solid line; CI), and the reference solution from
the pseudo-incompressible model (black dashed line; PI). (right) Comparison of blended runs using p′

half [or-
ange dots; CI-B(H)] and p′

full [purple crosses; CI-B(F)], and the compressible solution with balanced initial
states (green solid line; CB).

FIG. 6. Rising bubble on a (1603 80) grid: Potential temperature
at (top) initial time, t = 0 s and (bottom) final time tfin = 1000 s; con-
tours in the range [300.25, 301.75] K with a 0.25-K interval.
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beginning, data are only assimilated from t = 500.0 s onward.
Observations of the momentum field are then assimilated
every 50.0 s. As with the vortex experiments, only a tenth of
the grid points are observed, independent Gaussian noise is
added, and localization within an (11 3 11) grid points

region is applied. (The variances used to generate the
Gaussian noise are given in Table D1.) A localization func-
tion corresponding to the truncated Gaussian function is ap-
plied and the ensemble is not inflated. Examples of the
observation and truth are given in Fig. 9. Three ensembles
corresponding to the EnNoDA, EnDA, and EnDAB set-
tings, with 10 members each, are generated, but only one set
of experiments involving assimilation of the momentum
field only is pursued.

Note that as the ensembles and the observations are gener-
ated with balanced initial conditions, any noise present in the
simulation results is introduced by the data assimilation pro-
cedure. Table 2 summarizes the details of the data assimila-
tion-related experimental setup for both test cases.

3) EVALUATION OF DATA ASSIMILATION

The quality of data assimilation is evaluated by a spatially
and ensemble averaged root-mean-square error (RMSE)
from the truth. The RMSE is given by

FIG. 7. Time increments dp′ of pressure perturbation in the rising bubble experiment. (top left) dp′ value at time
step 14 (t = 26.6 s) for the compressible model with DtAC = 1.9 s; contours in the range [22.8, 2.8] Pa with an interval
of 0.8 Pa, negative contours dashed. The orange cross marks (x, z) = (27.5, 5) km and the red cross (x, z) = (0, 5) km.
(top right) History of dp′ over the first 350 s measured at (x, z) = (27.5, 5) km for the compressible model (blue solid
line; CI), the pseudo-incompressible model (black dashed line; PI) and the blended model with one pseudo-incom-
pressible time step (orange dots; CI-B). History of dp′ over the first 350 s measured at (middle row) (x, z) = (27.5, 5) km
and at (bottom row) (x, z) = (0, 5) km. Pseudo-incompressible solution (black dashed line, PI) and blended solution
with one time step spent in the pseudo-incompressible regime (CI-B; orange or red corresponding to the probe
marker in the top-left panel). The top, middle-left, and bottom-left panels use a constant time step Dt = 1.9 s. The
middle-right and bottom-right panels use Dt = 21.69 s for the first two time steps and then a Dt determined by advec-
tive CFL = 0.5.

TABLE 1. Errors Ec and Eb (see text for definitions) of the
time series of dp′ in [0, 1000] s relative to the reference pseudo-
incompressible run (middle and bottom panels of Fig. 7). The
acoustic time step size is DtAC = 1.9 s, while DtADV is determined
by advective CFL = 0.5 and DtADV = 21.69 s for the first two
time steps. Probe location (27.5, 5) km corresponds to the
orange marker and orange lines in Fig. 7, and probe location
(0, 5) km corresponds to the red marker and red lines.

Probe location Dt Ec Eb Ec/Eb

(27.5, 5) km
DtAC 413.1822 1.4820 278.80
DtADV 109.7538 3.9034 28.12

(0, 5) km
DtAC 10.1804 0.0311 327.34
DtADV 2.8231 0.1016 27.79
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where k = 1, … , K indexes the ensemble members and i =
1, … , Nx and j = 1, … , Nz the number of grid points in the
(x, z) coordinates. The c is the set of quantities {r, ru, rw,
P, p′}.

c. Ensemble data assimilation and blending: Results

1) TRAVELING VORTEX

Figure 10 depicts the ensemble snapshots for the vortex case
with all quantities observed and assimilated. EnNoDA acts as
the control ensemble, and the top row depicts its solutions for
the traveling vortex without data assimilation and blending.
While the center position of the vortex for each ensemble
member is perturbed, the ensemble mean vortex position
(right column) is centered around the origin. This is in line
with the conditions used to generate the initial ensemble. With
data assimilation, EnDA (middle row), the balance is lost and
the vortex structure is not preserved at the final time. Data as-
similation and blending, EnDAB (bottom row), recovers the
balanced solution and the vortex structure is preserved after
three periods of revolution. Moreover, comparing with Fig. 8,
the effect of data assimilation becomes obvious. The center
position of the EnDAB ensemble mean is in the lower right
quadrant, closer to that of the observation and the truth.

Referring to Fig. 11, data assimilation without blending
(EnDA, orange lines in Fig. 11) leads to a jump in the RMSE
in the thermodynamic P variable upon the first assimilation at

t = 25 s. After that, the error stays relatively constant. The
scale analysis in appendix C corroborates that the magnitude
of this error jump is compatible with a spontaneous acoustic
imbalance introduced by the data assimilation procedure.

Assimilating the momentum fields alone is insufficient and
the RMSE in the solution (solid lines in Fig. 11) is larger than
in the reference EnNoDA run. As expected, EnDAB pro-
vides a smoother solution over time as the error does not oscil-
late. This test includes a strong axisymmetric potential
temperature variation (Fig. 4), and the potential temperature is
an advected quantity not corrected by momentum data assimi-
lation. Therefore, the initially tight correlation of the velocity
and potential temperature variations gets destroyed in the
course of data assimilation. Since the potential temperature is
fluid dynamically active through the generation of baroclinic
torque, the flow fields of the ensemble members increasingly
deviate from their reference as a consequence.

Assimilating all the quantities yields an improvement (dashed
lines in Fig. 11). While the initial assimilation reduces the error
substantially for r, ru and rw of the EnDA run, the error in-
creases over time until approximately t = 150 s. The increase in
the error is due to the imbalances introduced by the chosen
(11 3 11) grid point size of the localization regions [more details
are provided in section 5c(3) and appendix C]. For the EnDAB
run, the imbalances are suppressed and the RMSEs are lower
than those of the control EnNoDA run for all quantities over the
entire simulation period. Ensemble spread and RMSE are com-
parable in these traveling vortex runs (not shown).

2) RISING BUBBLE

Figure 12 displays snapshots of pressure perturbation for the
bubble case. In the EnNoDA run (first row) the bubbles in the
ensemble attain different heights at the end of the simulation
time and the ensemble mean is diffused, in line with the spread
in the initial conditions used in generating the ensemble. En-
semble members with larger initial potential temperature per-
turbation rise faster. In the EnDA ensemble (second row),
large-amplitude fast-mode imbalances are present, while the
ensemble mean of the bubble rotor positions at the end time
better approximates the true positions of the rotors. For En-
DAB (third row), the individual ensemble members are close
to one another, as reflected in the ensemble mean. The ensem-
ble better approximates the truth and the fast-mode imbalan-
ces are suppressed. Moreover, the pressure footprints of the
bubble rotors are not visible in plots of the pressure differences
between the EnDA and EnDAB ensembles (fourth row),
showing that the difference between the EnDA and EnDAB
results is predominantly due to the presence of the imbalances
only, and suggesting (right column) that data assimilation is
comparably effective in nudging the bubble toward the truth in
both cases. Blending suppresses the imbalances while leaving
the dynamics of the rising bubble largely unaffected.

RMSE plots of data assimilation of the momentum fields in the
rising bubble experiment are shown in Fig. 13. The momentum
fields are assimilated every 50.0 s after 500.0 s. This is visible in
the momentum RMSE plots, where each downward step corre-
sponds to one application of the assimilation procedure. For

FIG. 8. Traveling vortex: (left) Sparse noisy observations and (right)
truths at t = 300.0 s. (top) Horizontal momentum ru; for the right
panel, contours in the range [60, 130] kg m21 s21 with a 10 kg m21 s21

interval. (bottom) Exner pressure perturbation p′; for the right panel,
dimensionless contours in the range [280, 0] 3 1025 with an interval
of 1024. Negative contours are dashed. The red squares illustrate, for
an example grid point (in red), the observations considered in the local
(113 11) gridpoint region.
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EnDA, an error is introduced in the density r and mass-weighted
potential temperature P. Blending negates this error and the En-
DAB curves show a smooth profile, with RMSE lower than the
control EnNoDA.As in the traveling vortex case, a jump is visible
in the RMSE of P at the first assimilation time for EnDA, and
this corresponds to the imbalances introduced. See appendix C on
the scale analysis for more details. The ensemble spread and
RMSE are again comparable in these runs (not shown).

3) LOCALIZATION REGION AND IMBALANCES

In this section, results of the EnDA and EnDAB ensembles
are investigated for varying localization radii. Here the aim is
not to obtain the optimal choice of the localization radius but

to illustrate its effect on the imbalances. All the quantities are
assimilated for the traveling vortex test case, and localization
regions of (5 3 5), (11 3 11), (21 3 21), and (41 3 41) grid
points are used in addition to a run without localization
(EnNoLoc). Otherwise, the setup follows the parameters
laid out in section 5a(1) and Table 2.

The balanced structure of the vortex could be preserved for
the quantities r, ru, and rw in the EnDA case. For these
EnDA quantities, the localization length scale plays an impor-
tant role.

If the localization region is too small, fewer observations
are involved in the update of the analysis grid point, and the
effect of data assimilation becomes less severe. As a result,
the nudging of the vortices in the ensemble toward the truth
is more gradual (Fig. 14). The drop in the RMSE after the first
assimilation time at t = 25 s for the run with a (53 5) localiza-
tion region (magenta solid with square markers) is the least
drastic, and the RMSEs continue to drop for the subsequent
assimilation step. However, the small localization region also
introduces severe imbalances that deteriorate the compact
vortex structure.

If the localization region is moderately small, e.g., (113 11)
(solid orange line with triangle markers in Fig. 14), sufficient
observation points are assimilated and the effect of data assim-
ilation becomes significant. At the same time, the localization
region is small enough such that the imbalances introduced
are sufficient to deteriorate the compact vortex structure. In
such a case, we see a relatively significant increase in the
RMSE over time as the combined detrimental effects from a
severe initial nudging of the vortices in the ensemble toward
the truth and from the imbalances introduced by the localiza-
tion are the most pronounced.

On the other hand, if the localization region is sufficiently
small, e.g., (5 3 5), the imbalances introduced by the localiza-
tion remain severe, but the gentler nudging of the vortices in
the ensemble toward the truth better preserves the compact
vortex structure, and we do not see a drastic increase in the
RMSEs as with the (113 11) run.

FIG. 9. Rising bubble: Horizontal momentum field ru at t =
1000.0 s. (top) Sparse and noisy observations and (bottom) truth;
contours in range [28, 8] kg m21 s21 with a 2 kg m21 s21 interval,
negative contours dashed.

TABLE 2. Assimilation-related experimental parameters. Here, K is the ensemble size, b is the ensemble inflation factor, tfirst is the
first assimilation time, Dtobs is the observation interval, cassimilated is the set of quantities assimilated, (N 3 N)local is the size of the
local region, flocal is the type of localization function, hobs is the observation noise, obssparse is the sparsity of the observations, and
Nblending is the number of initial time steps spent in the limit model regime. The p′ choice is used in the initialization of Nblending,
more details in section 4c.

Test case Vortex Bubble

Ensemble K 10 members
b 1.0

Observations tfirst (s) 25.0 500.0
Dtobs (s) 25.0 50.0
cassimilated {ru, rw} or {r, ru, rw, P, p′} {ru, rw}
(N 3 N)local (11 3 11) grid points
flocal Truncated Gaussian
hobs Gaussian with zero mean and variance in Table D1
obssparse One in 10 grid points

Blending Nblending A single blended time step
p′ choice p′

half
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For larger localization regions, the imbalance introduced by
local data assimilation is mitigated. In Fig. 14, the RMSE of
EnDA runs with larger localization regions, e.g., (21 3 21)
(yellow solid line with diamond markers) and (41 3 41) (cyan
solid line with star markers) generally perform better than the
other runs. We also note that a larger localization region cor-
responds to a smaller error jump in the variable P (top-right
panel of Fig. 14). For the case without localization (EnNoLoc,
solid brown line with cross markers), the error jump is almost
nonexistent, but an imbalance is nevertheless introduced, see
the fluctuation of the errors around that of the EnNoDA run
(black solid dotted line).

A localization region that is too large leads to an erroneous
oversampling of the dynamics. For example, the analysis update
of grid points inside of the vortex structure is influenced by obser-
vations of the background dynamics and vice versa. This mutual

influence results in a vortex structure that becomes increasingly
spread out as the number of assimilation steps increases. The
effect of oversampling can be seen in, e.g., the EnNoLoc run in
Fig. 14 and in the (41 3 41) and the EnNoLoc runs in Fig. 15,
where the error scores are higher than in a run with a moderate
localization region.

Application of blended data assimilation as a balancing mech-
anism eliminates the imbalances from a local data assimilation
procedure. As a result, smaller localization regions may be
used with fewer adverse effects, and the best error scores
are achieved by an EnDAB run with a localization region of
(11 3 11) grid points (dashed orange line with triangle
markers in Fig. 15). The higher RMSE in the (5 3 5) run
(dashed magenta line with square markers) may be due to
the undersampling of the vortex dynamics. This is the oppo-
site of the oversampling effect described above.

FIG. 10. Traveling vortex: Snapshots of pressure perturbation p′. Ensemble members with (left) index 3, (center) index 7, and
(right) ensemble mean at t = 300.0 s with all quantities {r, ru, rw, P, p′} assimilated. (top) EnNoDA run; contours in range [2200, 0]
Pa with a 40-Pa interval. (middle) EnDA run; contours in range [21900, 1300] Pa with a 640-Pa interval. (bottom) EnDAB run; contours
in range [2200, 0] Pa with a 40-Pa interval. Negative contours are dashed.
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For the rising bubble experiments (results not shown), runs
with assimilation of only the momentum fields and localization
region sizes up to (71 3 71) grid points were investigated. For
the quantities r, ru and rw, the RMSEs generally decrease
with larger localization regions, although the decrease in the
error is only marginal for localization region sizes larger than
(41 3 41) grid points. As in the traveling vortex tests, for
smaller localization regions, substantial error jumps in the P
and p′ variables are observed in the EnDA runs but not in the
EnDAB runs.

6. Discussion and conclusions

This paper has presented a new conceptual framework for
balanced data assimilation based on blended numerical models.
Using a discrete time-level numerical analysis for the Exner
pressure field and a careful choice of pressure perturbation vari-
ables, the blended soundproof-compressible modeling frame-
work of Benacchio et al. (2014) has been substantially upgraded
by a functionality to switch between equation sets in a single
time step.

In idealized numerical experiments with a traveling vortex
and a gravity-driven warm air bubble, a single time step in the
pseudo-incompressible limit regime was sufficient to recover
a balanced state starting from imbalanced initial data. More-
over, the blended model yielded leftover acoustics with ampli-
tude more than one order of magnitude smaller than the ones
generated at the onset with the fully compressible model. The

amplitude reduction is a sizeable improvement over the
scores of Benacchio et al. (2014) who, in addition, needed sev-
eral time steps in a hybrid soundproof-compressible configu-
ration with noninteger values of the blending parameter aP to
achieve their best level of noise reduction.

The upgraded blended model has then been combined with
a data assimilation engine and deployed as a tool to reduce
imbalances introduced by regular assimilation of data within
model runs. Numerical results on ensemble data assimilation
with and without blending showed that while data assimila-
tion alone produced imbalances that effectively destroyed
important qualitative features of the solution in one of the
test cases, data assimilation together with blending strongly
reduced those imbalances and led to recovery of accurate
results. Moreover, blended data assimilation was effective
despite the untuned data assimilation parameters used in the
investigations. Throughout our study, a single time step spent
in the pseudo-incompressible limit regime after the assimila-
tion of data was sufficient to restore a nearly balanced state, as
documented by strongly reduced RMSEs with the blended
model. The RMSEs of the blended data assimilation run are
almost as low as the error scores obtained from assimilating
data into a pseudo-incompressible ensemble run (results not
shown).

For ensemble data assimilation experiments with the travel-
ing vortex, assimilation of the momentum fields alone was
found to be insufficient in the case of large variation of the
potential temperature in the vortex core. In the course of

FIG. 11. Traveling vortex: EnNoDA run (solid dotted, black), EnDA run (orange), and EnDAB run (crossed
green). Assimilated quantities are ru and rw (solid lines) and r, ru, rw, P, p′ (dashed lines). Spatially and ensemble
averaged RMSE from t = 0.0 to 300.0 s for (top left) density r (kg m22), (top right) mass-weighted potential tempera-
ture P (log-linear scale; kg m22 K), and (bottom left) momentum ru and (bottom right) momentum rw (kg m21 s21).
The RMSE of the initial ensemble is omitted.
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longer simulations, the ensemble with balanced data assimi-
lation carried larger errors than the control ensemble with-
out data assimilation with such a setup (green solid curves
in Fig. 11). We associate this behavior with an issue of con-
trollability (Jazwinski 2007): The potential temperature var-
iations in this case are dynamically relevant owing to the
generation of vorticity by baroclinic torque. Thus, if these
variations are not assimilated, then the data assimilation
steps will destroy the alignment of the pressure and density
gradients in the vortex, and forecast quality will soon deteri-
orate. In fact, a test based on an analogous vortex with ini-
tially constant entropy yields results (not shown) close in
quality to those of the rising thermal test when only momen-
tum is assimilated. The issue was solved by assimilation of
all variables. Further investigation is warranted on how the
effectiveness of data assimilation can be improved under
such circumstances without the need to observe all state
variables.

A scale analysis (appendix C) corroborates the insight that
the RMSE increase introduced by the assimilation of data
corresponds to the fast-mode imbalances seen in the plots of

the individual ensemble members and the ensemble mean. In
this sense, our experiments make a case for investigations
involving relatively simple idealized test cases, as we were
able to gain some analytical understanding of the sources and
consequences of errors and imbalances. Nevertheless, further
studies based on more realistic scenarios will be required to
demonstrate that the presented approach and its extensions
will actually enable quantifiable improvements of numerical
weather prediction skill scores.

In the experiments involving ensemble data assimilation
with different localization radii, blended data assimilation
yielded, for all localization sizes, substantial improvements to
the RMSE relative to the plain data assimilation without a
balancing procedure. In fact, the best-performing data assimi-
lation-only run still produced worse results than the worst-
performing run with blending. Furthermore, the recovery of a
balanced vortex structure turned out to be sensitive to the
choice of localization radius, with best results obtained at
some intermediate size of the localization domains. This study
hints at a subtle interplay between the data assimilation setup
and the idealized tests investigated in this paper, and further

FIG. 12. Rising bubble: Snapshots of pressure perturbation p′. Ensemble members with (left) index 3 and (center) index 7 at t = 1000.0 s
with (right) the ensemble mean. Shown from top to bottom are the EnNoDA run, contours in range [2100, 40] Pa with a 20-Pa interval;
EnDA run, contours in range [2160, 80] Pa with a 40-Pa interval; EnDAB run, contours in range [2100, 40] Pa with a 20-Pa interval; and
difference between EnDA and EnDAB, contours in range [280, 100] Pa with a 30-Pa interval. Negative contours are dashed.
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investigations into the effects of data assimilation on idealized
and realistic dynamics are warranted.

In numerical weather prediction, methods to damp or re-
move acoustic imbalances have long been employed (e.g.,
Daley 1988; Skamarock and Klemp 1992; Dudhia 1995;
Klemp et al. 2018). Moreover, practical application of se-
quential data assimilation procedures will generally excite
all rapidly oscillatory modes of the compressible system,

and filtering techniques are used to negate these unphysical
imbalances (Ha et al. 2017). In this context, the results pre-
sented in this paper are encouraging in that blended data as-
similation was able to suppress acoustic noise and recover
balanced analysis fields, albeit for idealized test cases. To
the best of the authors’ knowledge, this is the first study of a
dynamics-driven method to suppress acoustic noise arising
from the sequential assimilation of data.

FIG. 13. Rising bubble: EnNoDA run (solid dotted, black), EnDA run (solid orange), EnDAB run (dashed green).
Assimilated quantities are ru and rw. Spatially and ensemble averaged RMSE from t = 100.0 to 1000.0 s for (top left)
density r (kg m22), (top right) mass-weighted potential temperature P (log-linear scale; kg m22 K), and (bottom left)
momentum ru and (bottom right) momentum rw (kg m21 s21).

FIG. 14. Traveling vortex: EnNoDA (black dots) and EnDA experiments corresponding to localization regions
with (53 5) (magenta squares), (113 11) (orange triangles), (213 21) (yellow diamonds), and (413 41) (cyan stars)
grid points, and EnNoLoc without localization (brown crosses). Assimilated quantities are r, ru, rw, P, and p′. Spa-
tially and ensemble averaged RMSE from t = 0.0 to 300.0 s for (top left) density r (kg m22), (top right) mass-weighted
potential temperature P (log-linear scale; kg m22 K), and (bottom left) momentum ru and (bottom right) momentum
rw (kg m21 s21). The RMSE of the initial ensemble is omitted.
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In addition, the results presented in this paper prepare the
ground for future work in a number of areas. In general, the
performance of a data assimilation method can be improved
by tuning its adjustable parameters. Here, however, we con-
sciously employed an untuned data assimilation scheme
known to produced unphysical imbalances to test the efficacy
of our dynamics-driven method in removing them. Conse-
quently, a comprehensive study similar to Popov and Sandu
(2019) on multivariate tuning of the LETKF and localization
parameters for the blended numerical model will be an ave-
nue for future improvements of our approach. The study
could also compare our method with existing balancing strate-
gies, e.g., the IAU and the DFI, following Polavarapu et al.
(2004). To ensure a fair comparison, optimizations of the
IAU along the lines of Lei and Whitaker (2016) and He et al.
(2020) may have to be carried out. A comparison of the
effects of our dynamics-driven method on the slower dynam-
ics against those of the DFI and IAU, which act as low-pass
filters (Houtekamer and Zhang 2016; Polavarapu et al. 2004),
will be particularly insightful.

Despite the untuned data assimilation scheme used, the
blended model has given promising results, although thus far
only for idealized test cases. Another natural evolution will
hence involve model performance on more realistic three-
dimensional moist dynamics scenarios with bottom topography
(O’Neill and Klein 2014; Duarte et al. 2015) and on benchmarks
at larger scales (Skamarock and Klemp 1994; Benacchio and
Klein 2019).

Although presented and refined here for the blending between
the compressible Euler equations and the pseudo-incompressible
model only, the methodology translates to other scenarios as
long as one can formulate the according projection onto ap-
propriate reduced dynamics via implicit substeps of a semi
or fully implicit scheme. Models imposing a divergence

constraint on the weighted velocity field as well as frame-
works blending between nonhydrostatic and hydrostatic dy-
namics will naturally fit into the present approach.

Specifically, the numerical scheme proposed by Benacchio
and Klein (2019) enables solution of the hydrostatic system in
the large-scale limit in addition to the small-scale low Mach
number limit considered in this paper. Therefore, a blended
data assimilation framework such as the one presented
here could be enhanced with hydrostatic blending and used
in a two-way blended pseudo-incompressible/hydrostatic/
compressible model (Klein and Benacchio 2016) exploiting
the different dynamics in the equation sets.

Moreover, the theoretical framework developed in that pa-
per also included the unified model by Arakawa and Konor
(2009) as one of the reduced models. Thus, after an appropri-
ate extension of the present numerical scheme, yet another
framework for blended data assimilation can be developed. In
fact, a variant of the fully compressible/Arakawa–Konor
model pair has recently been presented by Qaddouri et al.
(2021), and a related blending approach will allow for the
filtering of smaller-scale acoustic noise while leaving the Lamb
wave components dynamically unaffected. Investigations simi-
lar to the ones in this paper can then be made on balancing ini-
tial states and data assimilation for small- to planetary-scale
dynamics using the resulting doubly blended model framework.
Internal waves play an important role for atmospheric dynamics
and they should not be removed indiscriminately after a data
assimilation step. Therefore, the identification and removal of
unwanted internal wave noise while keeping the physically
meaningful wave spectrum is an additional challenge that will
require further theoretical developments beyond the scope of
this paper.

More generally, semi-implicit compressible models feature in
several dynamical cores used by weather centers worldwide.

FIG. 15. Traveling vortex: EnNoDA (black dots) and EnDAB experiments corresponding to localization regions
with (53 5) (magenta squares), (113 11), (orange triangles), (213 21) (yellow diamonds), and (413 41) (cyan stars)
grid points, and EnNoLoc without localization (brown crosses). See Fig. 14 for the details of the panels.
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Notable examples include the currently operational hydrostatic
IFS spectral transform model in use at the European Centre for
Medium-Range Weather Forecasts (ECMWF; Wedi et al. 2013),
and the Met Office’s Unified Model (Davies et al. 2005; Wood
et al. 2014), which has a hydrostatic-nonhydrostatic switch.
ECMWF’s next-generation nonhydrostatic compressible dynami-
cal core, IFS-FVM (Kühnlein et al. 2019), actually uses a numeri-
cal discretization akin to the one considered in this paper and
would therefore be an ideal candidate for a first implementation
of the blended tools in a semioperational model. In addition, our
approach will bear particular relevance to fully compressible
operational models featuring the option of selectively employ-
ing the dynamics of a limit model (Wood et al. 2014; Melvin
et al. 2019; Voitus et al. 2019; Qaddouri et al. 2021).

In this context, multimodel numerics with seamless switching
could contribute to creating a level playing field to evaluate accu-
racy and performance with different equation sets in the same
dynamical core. The positive evidence provided here in balancing
data assimilation shows, in the authors’ view, a considerable po-
tential and potential impact of deploying the blended model
framework across the whole forecast model chain.
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APPENDIX A

LETKF Algorithm

The local ensemble transform Kalman filter (LETKF) al-
gorithm presented here is a summary of the algorithm pub-
lished by Hunt et al. (2007) in their paper, adapted to the
blended numerical framework.

Start with an ensemble of K state vectors, {xfk,[g]} ∈Rm[g]

for k = 1, … , K. Furthermore, assume that a set of obser-
vations yobs,[g] ∈Rl[g] with a known covariance R[g] ∈Rl[g]3l[g]

is available. Here, m and l represent the dimension of the
state and observation spaces, and the subscript [g] repre-
sents the global state space, i.e., localization has not been
applied.

1) Apply the forward operator H to obtain the state vec-
tors in the observation space:

Hx
f
k,[g] � y

f
k,[g] ∈ Rl[g] : (A1)

2) Stack the anomaly of the state and observation vectors
to form the matrices:

X
f
[g] � x

f
1,[g] 2 x[g] · · ·| |xfK,[g] 2 x[g]

[ ]
∈ Rm[g]3K, (A2)

Y
f
[g] � y

f
1,[g] 2 y[g] · · ·| |yfK,[g] 2 y[g]

[ ]
∈ Rl[g]3K, (A3)

where x[g] (y[g]) is the mean of the state vectors (in obser-
vation space) over the ensemble:

x[g] �
1
K

∑K
k�1

x
f
k,[g] ∈ Rm[g] : (A4)

3) From X
f
[g] and Y

f
[g], select the local Xf and Yf.

4) From the global observations yobs,[g] and observation co-
variance R[g], select the corresponding local counterparts
yobs and R. Notice that the subscript [g] is dropped when
representing the local counterparts.

5) Solve the linear system RCT = Yf for C ∈RK3l.
6) Optionally, apply a localization function to C to modify

the influence of the surrounding observations.
7) Compute the K 3 K gain matrix:

K � (K 2 1) I
b
1 CYf

[ ]21

, (A5)

where b$ 1 is the ensemble inflation factor.
8) Compute the K 3 K analysis weight matrix:

Wa � (K 2 1) K[ ]1/2
: (A6)

9) Compute the K-dimension vector encoding the distance
of the observations from the forecast ensemble:

wa � KC(yobs 2 yf ), (A7)

and add wa to each column of Wa to get a set of K weight
vectors wa

k

{ }
with k = 1, … , K.

10) From the set of weight vectors, compute the analysis for
each ensemble member:

xak � Xfwa
k 1 xf , for k � 1,…,K: (A8)

11) Finally, recover the global analysis ensemble xak,[g]
{ }

,
k = 1, … , K.

This recovery depends on how the local regions were se-
lected in (A2) and (A3). For local region surrounding the
grid point under analysis, the reassembly of the global anal-
ysis ensemble is done by reassembling the analyzed grid
points back into the global grid.
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APPENDIX B

Initial Stable Vortex Configuration

The initial stable vortex configuration is given as follows.
Specifically, for a vortex with radius R, the initial nondi-
mensionalized density distribution is given by

r(x, z, t) � 1 2
1
2
(1 2 r2)6, if r , R,

1, otherwise;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (B1)

where r is the radial distance. The initial nondimensional-
ized pressure distribution is as follows:

p(x, z, t) � p(r), if r , R,
0, otherwise,

{
(B2)

where

p(r) � 2
r36
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1

r12
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· (B3)

Otherwise, the rest of the initial vortex setup follows the
setup in Kadioglu et al. (2008).

APPENDIX C

Scale Analysis for the Data Assimilation Error in the
Pressure-Related Fields

Figures 11 and 13 show that the assimilation of only the
momentum fields leads to a jump in RMSE in the nonmo-
mentum fields, and the assimilation of all quantities in Fig. 11
leads to a jump in RMSE in the pressure-related P field. This
increase in the error occurs after the first assimilation time
and remains of the same order of magnitude for the duration
of the simulation, quantifying the imbalance introduced by
data assimilation. The imbalance can be characterized by a
scale analysis (Klein et al. 2001).

The assimilation of the momentum fields leads to a
change in the divergence of the velocity fields:

= · (dv) � du
x

1
dw
z

, (C1)

where (du, dw) are the changes in the velocity fields due to
the assimilation of momenta in the vertical slice experi-
ments. Equation (C1) has the units per second (s21).

Observe from Figs. 10 and 12 that the imbalance intro-
duced by data assimilation are fast-mode acoustic waves.
This effect is modeled as a wave oscillating with the peak
amplitude right after the assimilation of data at the grid
point under analysis. Therefore, for an oscillating wave

excited at grid point (xi, zj), the maximum amplitude of
the imbalances is

(= · dv)(i,j)
� tac

0
cos

p

2
t
tac

( )
dt � 2tac

p
(= · dv)(i,j)

�p/2

0
cos(j)dj

[ ]

� 2tac
p

(= · dv)(i,j) · (C2)

The acoustic time scale tac is chosen as the time scale of
the largest perturbations introduced. This is the time a
wave takes to traverse to the edge of the (11 3 11) grid
points local region from the analysis grid point. Therefore,

tac �
11
2

dx
cref

, (C3)

where dx is the constant grid size and cref the speed of
sound. Equation (C3) has units of seconds and (C2) is
dimensionless.

As p � rc2ref, the contribution to the pressure from = · (dv)(i,j)
is computed by

2tac
p

= · (dv)(i,j)r(i,j)c2ref ∼ p̂(i,j), (C4)

which has the units of pascals. The hat ˆ signifies that the
quantity is obtained from scale analysis. Finally, use the
equation of state (6) to obtain an estimate for P̂.

FIG. C1. Scale analysis of the contribution to the mass-weighted
potential temperature P from the divergence of the velocity fields
for (top) the traveling vortex ensemble and (bottom) the rising
bubble ensemble. A semilogarithmic scale is used here. In the leg-
end, (all) represents the traveling vortex ensembles with all quanti-
ties, {r, ru, rw, P, p′}, assimilated. The first assimilation time is
marked with a vertical solid black line.
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For comparison with the RMSE, the norm is taken for P̂,
given by

P̂
∣∣ ∣∣ � 1

K

∑K
k

������������������������������
1

Nx 3 Nz

∑Nx ,Nz

i,j
P̂(i,j)
[ ]2√√√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

, (C5)

where k indexes the K ensemble members and Nx and Nz

are the number of grid points in the x and z coordinates.
Figure C1 shows the results of scale analysis for the two

test cases. Results at assimilation time are omitted. Scale
analysis yields EnDA results for P̂

∣∣ ∣∣ that are of the same or-
der of magnitude as the jumps in the RMSE plots (Figs. 11
and 13) with a similar profile over time. The scale analysis
in this appendix characterizes the error jump in the thermo-
dynamical RMSE plots as fast-mode imbalances introduced
through data assimilation.

APPENDIX D

Modeling the Observational Noise

The observational noise used in the data assimilation ex-
periments is drawn from a Gaussian distribution. This
Gaussian distribution has zero mean and a variance that is
approximately 5% of the variance of the sparsely observed
field averaged over all observation time. Specifically, the
variances given in Table D1 are computed as follows.

For a sparsely observed quantity without measurement
noise Y n

obs at observation time tnobs, compute the variance:

(sn
yobs

)2 � 1
Nobs

∑Nobs

s
[Y n

obs(x,z)s 2 Y
n
obs]2, (D1)

where s indexes the number of sparse observations Nobs,
and (x, z)s represents the (x, z) spatial point for the sth
sparse observation. The term Y

n
obs is the mean of the

sparsely observed field Y obs at observation time tnobs:

Y
n
obs �

1
Nobs

∑Nobs

s
Y n

obs(x,z)s · (D2)

This gives us the variance (sn
yobs )2 for each sparsely ob-

served quantity at each observation time t1obs, t
2
obs,…, tNobs

{ }
.

Finally, the time-average of 5% of the variance for each of
the observed quantities is taken:

s2
yobs

� 1
N

∑N
n

0:05 (sn
yobs

)2: (D3)
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