dc.contributor.author
Helfmann, Luzie
dc.contributor.author
Heitzig, Jobst
dc.contributor.author
Koltai, Peter
dc.contributor.author
Kurths, Jürgen
dc.contributor.author
Schütte, Christof
dc.date.accessioned
2021-12-01T13:55:33Z
dc.date.available
2021-12-01T13:55:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31664
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31395
dc.description.abstract
Agent-based models are a natural choice for modeling complex social systems. In such models simple stochastic interaction rules for a large population of individuals on the microscopic scale can lead to emergent dynamics on the macroscopic scale, for instance a sudden shift of majority opinion or behavior. Here we are introducing a methodology for studying noise-induced tipping between relevant subsets of the agent state space representing characteristic configurations. Due to a large number of interacting individuals, agent-based models are high-dimensional, though usually a lower-dimensional structure of the emerging collective behaviour exists. We therefore apply Diffusion Maps, a non-linear dimension reduction technique, to reveal the intrinsic low-dimensional structure. We characterize the tipping behaviour by means of Transition Path Theory, which helps gaining a statistical understanding of the tipping paths such as their distribution, flux and rate. By systematically studying two agent-based models that exhibit a multitude of tipping pathways and cascading effects, we illustrate the practicability of our approach.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
agent-based models
en
dc.subject
statistical analysis
en
dc.subject
tipping pathways
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Statistical analysis of tipping pathways in agent-based models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1140/epjs/s11734-021-00191-0
dcterms.bibliographicCitation.journaltitle
The European Physical Journal Special Topics
dcterms.bibliographicCitation.number
16-17
dcterms.bibliographicCitation.pagestart
3249
dcterms.bibliographicCitation.pageend
3271
dcterms.bibliographicCitation.volume
230
dcterms.bibliographicCitation.url
https://doi.org/10.1140/epjs/s11734-021-00191-0
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1951-6401
refubium.resourceType.provider
WoS-Alert