dc.contributor.author
Engel, Maximilian
dc.contributor.author
Gkogkas, Marios Antonios
dc.contributor.author
Kuehn, Christian
dc.date.accessioned
2021-05-31T08:25:53Z
dc.date.available
2021-05-31T08:25:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30915
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30654
dc.description.abstract
In this paper we study coupled fast-slow ordinary differential equations (ODEs) with small time scale separation parameter ε such that, for every fixed value of the slow variable, the fast dynamics are sufficiently chaotic with ergodic invariant measure. Convergence of the slow process to the solution of a homogenized stochastic differential equation (SDE) in the limit ε to zero, with explicit formulas for drift and diffusion coefficients, has so far only been obtained for the case that the fast dynamics evolve independently. In this paper we give sufficient conditions for the convergence of the first moments of the slow variable in the coupled case. Our proof is based upon a new method of stochastic regularization and functional-analytical techniques combined via a double limit procedure involving a zero-noise limit as well as considering ε to zero. We also give exact formulas for the drift and diffusion coefficients for the limiting SDE. As a main application of our theory, we study weakly-coupled systems, where the coupling only occurs in lower time scales.
en
dc.format.extent
34 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Deterministic homogenization
en
dc.subject
Coupled systems
en
dc.subject
Diffusion limit
en
dc.subject
Zero-noise limit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
25
dcterms.bibliographicCitation.doi
10.1007/s10955-021-02765-7
dcterms.bibliographicCitation.journaltitle
Journal of Statistical Physics
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
183
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10955-021-02765-7
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0022-4715
dcterms.isPartOf.eissn
1572-9613
refubium.resourceType.provider
WoS-Alert