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Abstract
In this paper we study coupled fast-slow ordinary differential equations (ODEs) with small
time scale separation parameter ε such that, for every fixed value of the slow variable, the
fast dynamics are sufficiently chaotic with ergodic invariant measure. Convergence of the
slow process to the solution of a homogenized stochastic differential equation (SDE) in the
limit ε to zero, with explicit formulas for drift and diffusion coefficients, has so far only
been obtained for the case that the fast dynamics evolve independently. In this paper we
give sufficient conditions for the convergence of the first moments of the slow variable in
the coupled case. Our proof is based upon a new method of stochastic regularization and
functional-analytical techniques combined via a double limit procedure involving a zero-
noise limit as well as considering ε to zero. We also give exact formulas for the drift and
diffusion coefficients for the limiting SDE. As a main application of our theory, we study
weakly-coupled systems, where the coupling only occurs in lower time scales.

Keywords Deterministic homogenization · Coupled systems · Diffusion limit · Zero-noise
limit

Mathematics Subject Classification 34E13 · 35J47 · 37A50 · 60F17 · 60H10

1 Introduction

Many natural processes can be modeled by systems with two clearly separated sets of vari-
ables: a set of variables which evolve rapidly in time (for instance, within milliseconds) and
a set of slowly varying variables (for instance, variables for which change is observed after
hundreds of years); see [30] for many examples and techniques in fast-slow systems. In many
applications the rapidly varying variables lie in a high-dimensional space and complicate the
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model significantly. Typical examples are chemical processes such as combustion [33], or
climate dynamics [17]. Therefore, one naturally seeks reduced equations for the slow dynam-
ics only. Several formal and rigorous reduction methods exist, such as Fenichel-Tikhonov
slow manifolds [19,30,39], averaging [40] and homogenization [7,38].

In this paper we are going to study multiscale ordinary differential equations (ODEs) with
three separated time scales and fast chaotic dynamics: firstly, a fast time scale O(ε2) with
nontrivial fast chaotic dynamics, butwith slow dynamicswhich are practically in equilibrium,
secondly an intermediate time scale O(ε) with fast dynamics which have equilibrated, and
finally a slow time scale O(1) (diffusive time scale). When the slow variables start to evolve
under the influence of the fast dynamics, one observes induced fluctuations. In this setting,
the method of reduction to a single slow equation is usually called homogenization. Common
techniques to achieve the reduction include methods based upon partial differential equations
(PDEs) via the Liouville or Fokker-Planck/Kolmogorov equations [10,37], techniques based
upon semigroups [31], algorithmic approaches [22], as well as pathwise approaches via
dynamical systems and probabilistic limit laws which we will focus on: in recent years,
Melbourne and co-workers [23,26,27,35] have obtained rigorous convergence results, with
high generality and mild assumptions, for the slow process xε within fast-slow systems of
the form

ẋε = a(xε, yε) + ε−1b(xε, yε), xε(0; η) = ξ ∈ R
d , for all η ∈ �, (slow equation),

(1.1a)

ẏε = ε−2g(yε), yε(0; η) = η ∈ � ⊂ R
m, for all η ∈ �, (fast equation), (1.1b)

where the vector fields a : Rd × R
m → R

d , b : Rd × R
m → R

d are C3 and bounded with
globally bounded derivatives. A main dynamical assumption is to require ergodicity for the
fastest scale, i.e., the ODE ẏ = g(y), y ∈ R

m , generates a flow φt : Rm → R
m with a

compact invariant set � ⊂ R
m and ergodic invariant probability measure μ supported on �.

Another intrinsic part of this setup is the centering condition∫
�

b(x, y) dμ(y) = 0, for all x ∈ R
d .

Systems of the form (1.1) are also called skew products, because they are not coupled but
instead the fast variables yε can be described by a separate dynamical system on �. Further,
we note that the initial condition η is the only source of randomness in the system. Without
particular mixing conditions on the flow φt , Kelly and Melbourne have shown [27] that for
any finite T > 0 the slow process xε converges weakly in C([0, T ],Rd) to the solution X of
an Itô stochastic differential equation (SDE) of the form

dX = ã(X) dt + σ(X) dW , X(0) = ξ, (1.2)

whereW is anRd -valued standardBrownianmotion,σ is amatrix-valuedmap and ã denotes a
modified drift term.Mixing assumptions on the flow φt are needed for more specific formulas
for drift and diffusion coefficients.

Although one might intuitively expect that fast chaotic noise may be approximated by
a stochastic process, it is neither obvious which stochastic integral to consider nor how to
prove the convergence to an SDE. The main difficulty lies in the fact that fast-slow systems
are singular perturbation problems [30] as ε → 0. Yet, as described above, there even exist
exact formulas for the drift term ã : Rd → R

d and the diffusion coefficient σ : Rd → R
d×d .

However, the skew-product structure (1.1) is a big practical restriction as it is well-known
that in most applications, the fast and slow variables are coupled [30]. Our main goal in this
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paper is to study coupled deterministic fast-slow systems or, in other words, to generalize
the study of systems of the form (1.1) by considering the case g = g(x, y). Unlike skew
products, coupled systems have barely been covered in the literature, with the only results for
the discrete-time case being obtained by Dolgopyat in [15], according to our best knowledge.
Informally speaking, we are going to prove that as ε → 0, the solutions of the fast-slow ODE
are well-approximated by an effective slow SDE; see Sect. 1.2 for precise statements. Our
strategy to achieve this result is to employ a double singular limit argument via an intermediate
small-noise regularization, i.e., the idea is to pass to the stochastic level as early as possible in
the proof and then use functional-analytic a-priori bounds to carry out both of the necessary
limits. The specific proofs will need limits of the respective integrals for the coefficients such
that mixing assumptions have to be made; this is the price we pay to show such results for
the coupled case.

1.1 Main Setup and Strategy for Coupled Systems

More precisely, in this paper we are interested in coupled fast-slow systems of the form

ẋε = a(xε, yε) + ε−1b(xε, yε), xε(0; η) = ξ ∈ R
d , for all η ∈ T

m, (slow equation),
(1.3a)

ẏε = ε−2g(xε, yε), yε(0; η) = η ∈ � ⊂ T
m, for all η ∈ T

m, (fast equation). (1.3b)

Before we can provide our main results, we state several assumptions, which are supposed
to hold:

Assumption 1.1(A1) The functions a : Rd ×T
m → R

d , b : Rd ×T
m → R

d are C3 with
globally bounded derivatives up to order one.

(A2) For every fixed x ∈ R
d , when viewed as a parameter, the ODE ẏ = g(x, y) , y ∈ T

m ,
generates a flow φ

0,t
x : Tm → T

m with a compact invariant set � ⊂ T
m and ergodic

invariant probability measure μ0
x supported on �. Furthermore, g is C3 with globally

bounded derivatives up to order two.
(A3) For the function b(x, ·) : � → R

d , the following centering condition is satisfied:
∫

�

b(x, y) dμ0
x (y) = 0 for all x ∈ R

d . (1.4)

Due to the coupling, the argument used for skew products cannot be repeated (cf. Sect. 2.1)
and we need a new ansatz. Our strategy is the following:

1. Instead of proving weak convergence of the slow process (as a measure in C([0, 1],Rd)),
we first try to prove a weaker form of convergence (e.g. convergence in distribution at any
time).

2. We add small stochastic non-degenerate noise to the fast subsystem in order to use results
on uniformly elliptic SDEs.

3. We let the noise in the stochastic system tend to zero and find the right limiting behaviour
for the deterministic fast-slow system.

The main reason, why we choose to work with stochastic systems as an intermediate step
is that they provide a regularization. The infinitesimal generator for the semigroup of the
associatedKolmogorov equation is uniformly elliptic. In particular, this case has been studied
and weak convergence of the slow process has been rigorously proven. Such systems have
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the form

dxε,δ

dt
= a(xε,δ, yε,δ) + 1

ε
b(xε,δ, yε,δ), xε,δ(0) = x0, (slow equation), (1.5a)

dyε,δ
dt

= 1

ε2
g(xε,δ, yε,δ) + 1

ε

√
δ
dV

dt
, yε,δ(0) = y0, (fast equation). (1.5b)

Here it is always assumed that δ > 0,V is anm-dimensionalBrownianmotionon aprobability
space (	,F, ν) and the SDE is to be understood as an integral equation, as usual, where
dV
dt denotes white noise viewed as the usual generalized stochastic process [2]. Further, let
E denote the expectation with respect to the Wiener measure ν. It is well-known that for a
sufficiently smooth function v : Rd × T

m → R the first moments

uε,δ(x, y, t) := E[v(xε,δ(t), yε,δ(t))|(xε,δ(0), yε,δ(0)) = (x, y)]
satisfy the backward Kolmogorov equation

duε,δ

dt
= Lε,δuε,δ :=

( 1

ε2
Lδ
1 + 1

ε
L2 + L3

)
uε,δ, (1.6)

where

Lδ
1u := g · ∇yu + 1

2
δ I : ∇y∇yu,

L2u := b · ∇xu,

L3u := a · ∇xu.

Here we use the notation A : B = trace(A�B) = ∑
i j ai j bi j for the inner product of two

matrices A and B, ∇ for the gradient and ∇∇ for the Hessian matrix. Note that (see for
example [38, Chapter 11]) the operator Lδ

1 : D(Lδ
1) ⊂ L2(Tm) → L2(Tm) is uniformly

elliptic and has for every fixed x ∈ R
d , viewed as a parameter, a one-dimensional null space.

The null space is characterized by

Lδ
1C = 0,(

Lδ
1

)∗
ρδ∞(y; x) = 0,

(1.7)

where C denotes the constant functions in y and ρδ∞ is the Lebesgue density of the measure
μδ
x , i.e.,

dμδ
x (y) := ρδ∞(y; x) dλm(y), (1.8)

where μδ
x is the unique ergodic invariant measure of the SDE

dy

dt
= g(x, y) + √

δ
dV

dt
.

Assume additionally that the centering condition∫
Tm

b(x, y)ρδ∞(y; x) dy = 0 (1.9)

is satisfied for all x ∈ R
d and δ > 0. Then, due to the uniform ellipticity of Lδ

1 for δ > 0,
applying the Fredholm alternative [38, Theorem 7.9] gives the existence of a unique centered
solution δ(y; x) of the so-called cell problem

− Lδ
1

δ(y; x) = b(x, y),
∫
Tm

δ(y; x)ρδ∞(y; x) dy = 0. (1.10)
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Using perturbation expansion techniques, which we will discuss in more details in Sect. 2.3,
it can been shown that uε,δ can be approximated by the leading order component uδ

0 which
satisfies

duδ
0

dt
= L0,δuδ

0, (1.11)

where the operator L0,δ acts on the twice continuously differentiable functions with compact
support C2

c (R
d) via

L0,δu := Fδ(x) · ∇xu + 1

2
Aδ(x)Aδ(x)� : ∇x∇xu, (1.12)

where the coefficients Fδ and Aδ depend on the solution δ of the cell problem (1.10) and
are given by

Fδ(x) :=
∫
Tm

(
a(x, y) + (∇x

δ(y; x))b(x, y)
)
ρδ∞(y; x) dy

= Fδ
1 (x) + Fδ

0 (x),

Aδ(x)Aδ(x)� := 1

2

(
Aδ
0(x) + Aδ

0(x)
�)

,

Aδ
0(x) := 2

∫
Tm

b(x, y) ⊗ δ(y; x)ρδ∞(y; x) dy.

(1.13)

We are now ready to state our main theorems.

1.2 Main Results

In the following, let (Xε(t; ξ, η), Y ε(t; ξ, η)) denote the solution of the ODE (1.3) for any
ε > 0 and let C0(R

d) denote the space of continuous functions vanishing at infinity, i.e., as
‖x‖ → ∞. Note that we still use the notation of Sect. 1.1. In addition we assume:

(A4) There exists a generator L0,0 of a strongly continuous semigroup T 0,0 on C0(R
d),

with domain D ⊂ C0(R
d) containing C2

c (R
d), such that for all f ∈ C2

c (R
d) we have

lim
δ→0

L0,δ f = L0,0 f uniformly. (1.14)

Theorem A Assume (A1)-(A4). Then, for every f ∈ C0(R
d) and every sequence {εk}k≥0 with

εk → 0 for k → ∞, there exists a subsequence {εkm }m≥0 such that for m → ∞
f (Xεkm (t; ξ, η)) → T 0,0(t) f (ξ), uniformly in ξ ∈ R

d , η ∈ � and t ∈ [0, T̂ ],
where T̂ is any finite time.

TheoremA provides a convergence result of the original fast-slow systemwith sufficiently
strong assumptions on the fast chaotic dynamics to aMarkov process, whose correspondence
with a reduced slow SDE is specified below in the context of Theorem B (see (1.22)). The
notion of convergence is to be understood in a weak averaged sense but it does cover the
coupled case. The proof of Theorem A is provided in Sect. 2.4. The second main result,
Theorem B, gives sufficient conditions under which the main assumption (A4) in TheoremA
is satisfied. Let us define the solution operator φ

δ,t
x (y) of the fast equation for ε = 1, solving,

for a fixed x ∈ R
d , the SDE

d

dt
φδ,t
x (y) = g(x, φδ,t

x (y)) + √
δ
dV

dt
, φδ,0

x (y) = y. (1.15)
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Note that φ
δ,t
x (y) depends on a Brownian motion and, hence, is a stochastic process

φ
δ,t
x (y)(ω), ω ∈ 	. Furthermore, notice that the flow φ

0,t
x is purely deterministic.

Theorem B Assume that the unperturbed flow φ
0,t
x has an ergodic invariant probability mea-

sure μ0 and summable stochastically stable decay of correlations C(t; x) in the sense of
Definitions 3.2 and 3.5. Additionally (A1)-(A2) are satisfied and suppose the following cen-
tering condition holds∫

Tm
b(x, y) dμδ

x (y) = 0 for all x ∈ R
d and δ ≥ 0. (1.16)

Then we have the following:

1. In the case that g = g(y) is independent of x, then condition (A4) is satisfied.
2. In the general case that g = g(x, y), (A4) holds provided that the centering condition∫

Tm
∇yb(x, y) dμ

δ
x (y) = 0 for all x ∈ R

d and δ ≥ 0 (1.17)

and the growth assumption∫ ∞

0
sup
x∈Rd

{
C(t; x) ‖ ∇xφ

0,t
x (·)b(x, ·) ‖α

}
dt < ∞ (1.18)

are satisfied (Here, ‖ · ‖α denotes the α-Hölder norm for an α > 0).
3. The operator L0,0 can be written as

L0,0u = F0(x) · ∇x + 1

2
A0(x)A0(x) : ∇x∇xu, (1.19)

where the diffusion coefficient A0 is given by

A0(x)A0(x)� = 1

2

(
A0
0(x) + A0

0(x)
�)

,

A0
0(x) = 2

∫ ∞

0
lim

T→∞
1

T

∫ T

0
b(x, φ0,s

x (y))b
(
x, φ0,t+s

x (y)
)
ds dt .

(1.20)

and the drift term F0 is given by

F0(x) = lim
T→∞

1

T

∫ T

0
a(x, φ0,s

x (y))ds

+ lim
T→∞

1

T

∫ T

0

(
∇xb

(
x, φ0,t+s

x (y)

+ ∇yb
(
x, φ0,t+s

x (y)
)
∇xφ

0,t
x (φ0,s

x (y))

)
b
(
x, φ0,s

x (y)
)
ds. (1.21)

Theorem B is proven at the end of Sect. 3. Note that the Markov process X generated by
L0,0 is expliticitly given by the SDE

dX = F0(X) + A0(X) dW , X(0) = ξ ∈ R
d , (1.22)

whose unique solvability is guaranteed by the smoothness and boundedness assumptions
(A1), (A2).Moreover, the action of the semigroup T 0,0 f is given byE[ f (X(t))]. The growth
assumption (1.18) is a strong mixing assumption on the flow and it remains to be determined
precisely how large the class of functions satisfying this property is in applications (see
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remarks in Sect. 2.4). One possible way to weaken this assumption is to consider systems
that are not coupled in the strongest possible sense, but for which the coupling occurs in
smaller time scales. We refer to such systems as weakly-coupled and their general form is
given by the following fast-slow ODE on Rd × T

m

dxε

dt
= a(xε, yε) + 1

ε
b(xε, yε), xε(0) = ξ, (1.23a)

dyε
dt

= 1

ε2
g(yε) + 1

ε
h(xε, yε) + r(xε, yε), yε(0) = η. (1.23b)

Indeed, there are several examples of multiscale systems with interesting dynamical
behaviour such as mixed-mode oscillations, where three time scales occur (see for example
[12,28,29]). Furthermore, these three-scale systems are often very similar to related problems
of van der Pol type, where rigorous proofs for chaos exist [25].

In the following, let (Xε(t; ξ, η), Y ε(t; ξ, η)) be the solution of the ODE (1.23). In this
case, the solution operator φδ,t for the fast dynamics of the stochastically perturbed system,
given by

d

dt
φδ,t (y) = g(φδ,t (y)) + √

δ dV , φδ,0(y) = y, (1.24)

does not depend on x .

Theorem C Assume (A1)-(A2) and

1. that the unperturbed flowφ0,t has an ergodic invariant probability measureμ0, summable
and stochastically stable decay of correlations C(t) in the sense of Definitions 3.2 and
3.5, and that the centering condition (1.16) is satisfied,

2. in the case that h does not vanish everywhere, additionally, that the centering condi-
tion (1.17) and the growth condition∫ ∞

0
C(t) sup

x∈Rd

{
‖ ∇yφ

0,t (·)h(x, ·) ‖α

}
dt < ∞ (1.25)

are both satisfied.

Then,

1. condition (A4) is satisfied and for every f ∈ C0(R
d) and every sequence {εk}k≥0 with

εk → 0 for k → ∞, there exists a subsequence {εkm }m≥0 such that

f (Xεkm (t; ξ, η)) → T 0,0(t) f (ξ), uniformly in ξ ∈ R
d , η ∈ � and t ∈ [0, T̂ ].

2. The operator L0,0 can be written as

L0,0u = F̃0(x) · ∇x + 1

2
A0(x)A0(x) : ∇x∇xu, (1.26)

where F̃0 is given by (1.28) and A0 is given by (1.27).

Theproof ofTheoremC is givenwithTheorem4.1 below.Note once again that T 0,0(t) f =
E[ f (X(t))], where the Markov process X is generated by L0,0. Moreover, X solves the SDE
(1.22) (with modified drift F̃0 instead of F0). Basically Theorem C states that we have the
desired convergence, where the growth assumption on the correlation function is relaxed in
the sense that weakly-coupled fast-slow systems behave more like the skew-product case.
More precisely, for weakly-coupled systems of the form (1.23),
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• with vanishing h ≡ 0 (i.e. with coupling occuring only in the lowest posssible time scale),
summable decay of correlations (DOC) is sufficient, provided that it is stochastically sta-
ble in the sense ofDefinition 3.5. There are plenty of examples for systemswith summable
DOC, including Anosov flows with exponential DOC, like for instance geodesic flows on
compact negatively curved surfaces [13] or contact Anosov flows [32], Axiom A flows
with superpolynomial DOC (also called rapid mixing) [20] or non-hyperbolic flows with
a stable C1+α foliation including some geometric Lorenz attractors [1], see also Sect.
2.2. The assumption of stochastically stable DOC is crucial and unfortunately, we are so
far lacking any theory to prove for a dynamical system if it satisfies this property. This
may actually be difficult to prove and we leave it as an open problem for future research
here.

• with non-vanishing h, the correlation function must satisfy the stronger assumption
(1.25).

In summary, our results provide an entire scale of results from the more classical skew-
product structure, via weak coupling to strong coupling.

Remark 1.2 The explicit formulas for A0 and F̃0 for Theorem C are

A0(x)A0(x)� = 1

2

(
A0
0(x) + A0

0(x)
�)

,

A0
0(x) = 2

∫ ∞

0
lim

T→∞
1

T

∫ T

0
b(x, φ0,s(y))b

(
x, φ0,t+s(y)

)
ds dt .

(1.27)

and

F̃0(x) = lim
T→∞

1

T

∫ T

0
a(x, φ0,s(y)) ds

+
∫ ∞

0
lim

T→∞
1

T

∫ T

0

(
∇xb

(
x, φ0,t+s(y)

)
b
(
x, φ0,s(y)

)

+ ∇yb
(
x, φ0,t+s(y)

)
∇yφ

0,t (φ0,s(y))h
(
x, φ0,s(y)

))
ds dt . (1.28)

1.3 Outline of the Paper

In Sect. 2 we first discuss the main idea of the proofs used in [26,27] for proving weak
convergence of the slow process in skew product systems (Sect. 2.1) (Sect. 2.1) and we also
summarize some progress, which has been achieved over the last years, in proving mixing
properties of certain classes of flows (Sect. 2.2). We then recall and extend in Sect. 2.3 some
basic facts required for stochastic systems. In Sect. 2.4, we prove TheoremA, which provides
criteria to guaranteeweak convergence of the slow process for coupled systems. In Sect. 3, we
then prove Theorem B, which gives sufficient conditions for verifying the main assumption
in Theorem A and provides explicit formulas for the drift and diffusion coefficients of the
limiting Itô SDE. In Sect. 4 we apply our theory to weakly-coupled systems: we transfer the
results obtained for coupled systems leading to the proof of Theorem C (Sect. 4.1) and, in
addition, discuss a numerical example (Sect. 4.2). Finally, in Sect. 5 we state our conclusions
and discuss open problems and directions for further research.
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2 From Skew Products to Coupled Systems

2.1 Main Idea Used in Previous Results

Before starting proving our main results, we want quickly summarize the main idea used in
[26] and [27] to study systems of the form (1.1). This provides suitable background for the
reader and also shows that our approach to the problem works along a completely different
route. The basic tool used in [26,27] is the so-called Weak Invariance Principle (WIP) and
the idea of the proof can been very easily illustrated in the special case of a multiplicative
noise (considered in [26]), i.e., under the additional assumption that the vector-field b has a
multiplicative structure

b(x, y) ≡ b(x)v(y), b : Rd → R
d×e, v : � → R

e. (2.1)

For simplicity let us just in this section restrict to the case that the vector field a is also
independent of y, i.e., a = a(x). In this case the system (1.1) can be rewritten as

dXε = a(Xε) dt + b(Xε) dWε, Xε(0; η) = ξ, (2.2)

where the family of random elements Wε(·; η) ∈ C([0, 1],Re) is defined by

Wε(t; η) := εvtε−2(η), vt (η) :=
∫ t

0
v ◦ φs(η)ds. (2.3)

The key observation now is that if the flow φs is sufficiently chaotic, then the process Wε

satisfies the WIP

Wε →w W in C([0, 1],Re) as ε → 0, (2.4)

which is a generalization of the Central Limit Theorem. Therefore, we are already tempted
to conclude weak convergence of the slow process Xε . The framework under which this
intuitive idea has been rigorously justified is rough path theory [21]. Equation (2.2) can be
interpreted as a rough differential equation

dXε = a(Xε) dt + b(Xε) d(Wε,Wε), Xε(0; η) = ξ.

Noticing further, as shown in [26], that for any γ > 1
3 an iterated WIP, i.e.

(Wε,Wε) →w (W ,W) as ε → 0 in the rough path ργ topology, (2.5)

holds, one can conclude due to continuity of the solution map of such rough differential
equations [21] and the Continuous Mapping Theorem, the weak convergence of the slow
process, i.e. as result of the form

Xε →w X as ε → 0, dX = a(X) dt + b(X) ∗ dW , (2.6)

where b(X) ∗ dW is a certain kind of stochastic integral [26]. More general vector fields b
are considered in [27] and the main idea is to rewrite the system (1.1) in the form

dXε = F(Xε) dVε + H(Xε) dWε,

where Vε and Wε are function space valued paths given by

Vε(t) =
∫ t

0
a(·, yε(r)) dr and Wε(t) = ε−1

∫ t

0
b(·, yε(r)) dr .
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In this context, the operators F(x), H(x) are interpreted as Dirac distributions located at x ,
that is F(x)φ = φ(x) for any φ in the function space and similarly for H . Under mixing
assumptions the iteratedWIP (2.5) holds and as in the case ofmultiplicative noise one can then
conclude a result of the form (2.6). Exact formulas of the drift and diffusion coefficients are
also given in [27]. In summary, the approach relies upon a pathwise viewpoint and continuity
in the rough-path topology to solutions of ODEs/SDEs. Yet, this approach seems to be very
difficult to generalize if the fast-slow system is fully coupled. In particular, this has motivated
our approach to look for weaker convergence concepts in a more functional-analytic setting.

2.2 Rates of Mixing for Classes of Flows

In the following, we briefly give an overview over rigorous results on mixing rates of certain
classes of flows that thereby satisfy summable decay of correlations in the sense of Defini-
tion 3.2. Given a measure preserving flow φt : 	 → 	, the correlation function is defined
as

ρA,B(t) :=
∫

	

A ◦ t Bdμ −
∫

	

Adμ

∫
	

Bdμ.

for observables A, B ∈ L2(	,μ). The flow φt is called a mixing if and only if ρA,B(t) → 0
as t → ∞ for all A, B ∈ L2(	,μ) (see e.g. [34]).

2.2.1 Uniformly Hyperbolic Flows

Assume that the flow φt : M → M isC2 and defined on a compact manifold M . An invariant
compact set	 ⊂ M is a hyperbolic set for φt , provided that the tangent bundle over	 admits
a continuous Dφt - invariant spliting

T	M = Eu ⊕ E0 ⊕ Es

of uniformly contracting and expanding directions. For an Axiom A (uniformly hyperbolic)
flow the dynamics can be reduced into finitely many hyperbolic sets 	1, ... 	k , called hyper-
bolic basis sets, which all contain a dense orbit. On every hyperbolic basic set 	 = 	i , for
i ∈ {1, ..., N }, we can associate, to every Hölder function on 	 a unique invariant ergodic
probability measure μ. We can further categorize Axiom A flows depending on the speed of
mixing. For example, for flows with exponential DOC, the correlation function, restricted to
a suitable subspace of L2(	,μ) (like, for example, an appropriate Hölder space), satisfies

ρA,B(t) ≤ C(A, B)e−αt , ∀t > 0,

for constants C, α > 0. This was proven for example for certain classes of Anosov flows
(i.e. special types of Axiom A flows for which the whole set M is uniformly hyperbolic) like
geodesic flows on compact negatively curved surfaces [13] and contact Anosov flows [32].
Appart from exponential DOC we also have weaker notions, such as stretched exponential
mixing, i.e. for some constant 0 < β ≤ 1

ρA,B(t) ≤ C(A, B)e−αtβ , ∀t > 0,

whichwas proven for a large class of Anosov flows in dimension 3 [11], and superpolynomial
decay (or rapid mixing), i.e. for any n > 0 the correlation function satisfies

ρA,B(t) ≤ C(A, B)t−n, ∀t > 0,
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or in other words, DOC at an arbitary polynomial rate. Dolgopyat [14] proved rapid mixing
for “typical” Axiom A flows. Moreover, he has shown that an open and dense set of Axiom
A flows is rapid mixing, when restricted to sufficiently smooth observables [15]. For all
mentioned classes of mixing flows, the correlation is summable, that is we have

∫ ∞

0
ρA,B(t)dt < ∞.

2.2.2 Non-uniformly Hyperbolic Flows

Since the assumption of uniform hyperbolicity might be too restrictive for real applications,
it is natural to seek for a good mixing theory for non-uniformly hyperbolic flows. Over the
last few years remarkable progress has been achieved in this area; see e.g. [34] and references
therein for a good overview concerning results in this direction. For example, in [1], extending
results from [4], exponential DOC is proven for a class of non-uniformly hyperbolic skew-
product flows satisfying an uniform integrability condition, which contains an open set of
geometric Lorenz attractors. Moreover, in [6], for certain types of Gibbs-Markov flows,
including intermittent solenoidal flows and various Lorentz gas models including the infinite
horizon Lorentz gas polynomial, DOC of the correlation function

ρA,B(t) ≤ C(A, B)t−(β−1) ∀t > 0,

with β > 1, is proven. For such flows, the DOC is summable, provided that β > 2.

2.3 Basic Facts for Stochastic Systems

Let us now come back to the coupled systems (1.3). In the following we use the notation
from Sect. 1.1. If we further consider the Banach space X := (C0(R

d × T
m), ‖ · ‖∞) of

continuous functions, which vanish as ‖x‖2 → ∞ for points (x, y) ∈ R
d × T

m ; with the
usual supremum norm, it can be shown (cf. Lemma A.3 in the Appendix) that the closure
L̄1

δ
generates an ergodic strongly continuous contraction semigroup {Sδ(t)}t≥0 on X (in the

sense of Definition A.1) and L̄ε,δ generates a strongly continuous contraction semigroup on
X denoted by {T ε,δ(t)}t≥0. Let Pδ be the projection corresponding to the ergodic semigroup
produced by Lδ

1, acting on X explicitly via

Pδ f (x, y) :=
∫
Tm

f (x, y)ρδ∞(y; x) dy, f ∈ X . (2.7)

The perturbation expansion

uε,δ = uδ
0 + εuδ

1 + ε2uδ
2 + · · · , (2.8)

leads, as shown for instance in [38] and [22] (cf. Sect. B in the Appendix for completeness)
to the following equation for the leading order u0:

duδ
0

dt
(x, t) =

∫
Tm

ρδ∞(y; x)L3u
δ
0(x, t) dy −

∫
Tm

ρδ∞(y; x)L2

(
Lδ
1

)−1
L2u

δ
0(x, t) dy

=
(
PδL3Pδ − PδL2

(
Lδ
1

)−1
L2Pδ

)
uδ
0(x, t)

=: L0,δuδ
0. (2.9)
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The operator L0,δ acting on the right side of equation (2.9) can be more precisely evaluated,
using the function δ defined in (1.10). As shown in [38], equation (2.9) can be rewritten as

duδ
0

dt
= Fδ(x) · ∇xu

δ
0 + 1

2
Aδ(x)Aδ(x)� : ∇x∇xu

δ
0

= L0,δuδ
0 (2.10)

where the drift and diffusion coefficients are given by (1.13) and L0,δuδ
0 is given by (1.11).

The major disadvantage of the formulas (1.13) is that they use the solution δ of the cell
problem which is not well-posed for L0

1 or in other words, in the case that we work with
purely deterministic systems. However, there are also some alternative expressions, which
are more suitable for deterministic systems and are already proven in [38], but which are for
convenience included in the following Lemma 2.2, since we require some minor changes.
The alternative expressions use the solution operator φ

δ,t
x (y) of the fast dynamics given by

(1.15). Recall that E denotes the expectation with respect to Wiener measure ν on 	 and
further let Eμx⊗ν denote the expectation with respect to the product measure μδ

x ⊗ ν, where
μδ
x is the ergodic measure defined in (1.8).

Lemma 2.1 (Differentiability of the solution operatorwith respect to x) There exists a version
of the stochastic process φ

δ,t
x such that for almost all (a.a.) ω ∈ 	 the function x → φ

δ,t
x is

continuously differentiable for every t and the differential ∇xφ
δ,t
x (y) ∈ R

m×d satisfies the
linear ODE

d

dt
∇xφ

δ,t
x (y) = ∇x g(x, φ

δ,t
x (y)) + ∇yg(x, φ

δ,t
x (y))∇xφ

δ,t
x (y), ∇xφ

δ,0
x (y) = 0. (2.11)

Proof This follows from [36, Theorem 4.2], where we set vx (t) := y + σ2
dV
dt , u := x and

dZs := dt such that φx (t) = vx (t) + ∫ t
0 g(x, φx (s)) dZs , and observe that all assumptions

are satisfied since g has bounded derivatives up to order two. ��
Lemma 2.2 (Alternative representations of the coefficients of the limiting SDE) Fix a δ > 0.
Wehave the following alternative formulas for the vector fields Fδ

0 (x), Fδ
1 (x)and the diffusion

matrix Aδ
0(x) from equation (1.13): For all y ∈ T

m and for a.a. ω ∈ 	 we have

Fδ
1 (x) = lim

T→∞
1

T

∫ T

0
a
(
x, φδ,s

x (y)(ω)
)
ds (2.12)

and

Aδ
0(x) = 2

∫ ∞

0
lim

T→∞
1

T

∫ T

0
b(x, φδ,s

x (y)(ω)) ⊗ E[b
(
x, φδ,t

x (φδ,s
x (y)(ω))

)
] ds dt, (2.13)

and if there exists a constant D(t) such that

∇x

(
E[b(x, φδ,t

x (y))]
)

≤ D(t), for all x ∈ R
d ,

∫ ∞

0
D(t) dt < ∞, (2.14)

then, it holds also that

Fδ
0 (x) =

∫ ∞

0

(
lim

T→∞
1

T

∫ T

0
E

[
∇xb

(
x, φδ,t

x (φs
x (y)(ω))

)

+ ∇yb
(
x, φδ,t

x (φδ,s
x (y)(ω))

)
∇xφ

δ,t
x (φδ,s

x (y)(ω))
]
b
(
x, φδ,s

x (y)(ω)
)
ds

)
dt .

(2.15)
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Proof We follow the proof given in [38, Chapter 11]. We first calculate

δ(y; x) =
∫ ∞

0
(eL

δ
1t b)(x, y) dt (by [38, Result11.8])

=
∫ ∞

0
E[b(x, φδ,t

x (y))] dt (by [38, Theorem 6.6])

Thus, using Fubini’s theorem,

Aδ
0(x) = 2

∫
Tm

b(x, y) ⊗ δ(y; x)ρ∞(y; x) dy

= 2
∫
Tm

b(x, y) ⊗
∫ ∞

0
E[b(x, φδ,t

x (y))] dt ρδ∞(y; x) dy

= 2
∫ ∞

0

∫
Tm

b(x, y) ⊗
∫

	

b(x, φδ,t
x (y)(ω)) dν(ω)ρδ∞(y; x) dy dt

= 2
∫ ∞

0
E

μδ
x⊗ν[b(x, y) ⊗ b(x, φδ,t

x (y))] dt .

Setting h(x, y; t) := b(x, y) ⊗ E[b(x, φδ,t
x (y))] we get from Theorem [38, Theorem 6.16]

that for a.a. ω ∈ 	 we have∫
Tm

h(x, y; t)ρδ∞(y; x) dy = lim
T→∞

1

T

∫ T

0
h(x, φδ,s

x (y)(ω))ds

and by inserting into the expression for Aδ
0(x) we get that for a.a. ω ∈ 	 equation (2.13) is

satisfied. Analogously (noticing that condition (2.14) allows us to interchange the order of
integration and the ∇x operator),

Fδ
0 (x) =

∫
Tm

ρδ∞(y; x)∇x
δ(y; x)b(x, y) dy

=
∫
Tm

ρδ∞(y; x)∇x [
∫ ∞

0
E[b(x, φδ,t

x (y))] dt]b(x, y) dy

=
∫
Tm

ρδ∞(y; x)[
∫ ∞

0

∫
	

∇x

(
b(x, φδ,t

x (y)(ω))
)
dν(ω) dt]b(x, y) dy

=
∫ ∞

0

∫
Tm

ρδ∞(y; x)
∫

	

∇x

(
b(x, φδ,t

x (y)(ω))
)
dν(ω)b(x, y) dy dt

=
∫ ∞

0
E

μδ
x⊗ν[∇x

(
b(x, φδ,t

x (y))
)
b(x, y)] dt .

By the chain rule we have that

∇x

(
b(x, φδ,t

x (y))
)

= ∇xb(x, φ
δ,t
x (y)) + ∇yb(x, φ

δ,t
x (y))∇xφ

δ,t
x (y).

Thus, setting

h(x, y; t) := E[∇xb(x, φ
δ,t
x (y)) + ∇yb(x, φ

δ,t
x (y))∇xφ

δ,t
x (y)]b(x, y),

we get equation (2.15) by [38, Theorem 6.16]. Now the expression for Fδ
1 follows directly

from [38, Theorem 6.16]. ��
Finally, let (T 0,δ(t))t≥0 denote the corresponding semigroup of the generator L0,δ on

C0(R
d). The basic important fact that we use in the following is that the semigroup
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(T ε,δ(t))t≥0 converges towards (T 0,δ(t))t≥0 as ε → 0, as stated in Theorem A.4, which
has similarly been proven by Kurtz [31], but is formulated and shown in the Appendix for
the reader’s convenience. We are now ready to state the main result of this section.

2.4 Main Result for Coupled Systems

In the following, let {T ε,0(t)}t≥0 denote the semigroup on X generated by Lε,0, which is
defined as in (1.6) with δ = 0. Similarly we consider the generator L̄0,0 for the strongly
continuous semigroup T 0,0(t) on C0(R

d).

Theorem 2.3 Under the assumptions (A1)-(A4), it follows that for every f ∈ C0(R
d) and

every sequence {εk}k≥0 with εk → 0 for k → ∞, there exists a subsequence {εkm }m≥0 such
that for any finite time T̂ > 0

lim
m→∞ sup

0≤t≤T̂

‖ T εkm ,0(t) f − T 0,0(t) f ‖∞= 0. (2.16)

Proof Fix f ∈ C0(R
d). We have by the triangle inequality

‖ T ε,0(t) f − T 0,0(t) f ‖∞ ≤‖ T ε,0(t) f − T ε,δ(t) f ‖∞ + ‖ T ε,δ(t) f − T 0,δ(t) f ‖∞
+ ‖ T 0,δ(t) f − T 0,0(t) f ‖∞ .

(2.17)

Further, due to the definition of the operator Lδ
1 we see immediately that for all f ∈ D(Lε,δ)

lim
δ→0

Lε,δ f = Lε,0 f uniformly. (2.18)

Due to equations (2.18) and (1.14) and by the Trotter-Kato Theorem (see for example [16,
Theorem 4.8]) we observe that for any fixed ε > 0 the first and the last term on the right side
of equation (2.17) can be made arbitrary small as δ → 0. The second difference for any fixed
δ > 0 can be also made arbitrary small as ε → 0 due to Theorem A.4. To be more precise,
let {εk}k≥0 be a sequence with εk → 0 for k → ∞. Then we can find for every k ∈ N a
δk > 0 so that

‖ T εk ,0(t) f − T εk ,δk (t) f ‖∞ + ‖ T 0,δk (t) f − T 0,0(t) f ‖∞<
2εk
3

.

Moreover, for any k ∈ N we can fix an l(k) ∈ N so that

‖ T εl(k),δk (t) f − T 0,δk (t) f ‖∞<
εk

3
.

In this way we get a subsequence {εl(k)}k≥0 for which

‖ T εl(k),0(t) f − T 0,0(t) f ‖∞≤ εk

holds. The claim now follows by taking the limit k → ∞. ��
Remark 2.4 A sufficient condition for the key assumption (A4) to hold is that

Fδ
0 → F0

0 , Fδ
1 → F0

1 , Aδ
0 → A0

0 uniformly in x, (2.19)

provided that the expressions F0
0 , F0

1 , A0
0 are well-defined, which requires sufficiently fast

decay of correlations. Furthermore, Theorem B gives us precise conditions under, which
(A4) is satisfied. In the case that g = g(y) is independent of x , the posed assumptions are
relatively mild.

123



Homogenization of Coupled Fast-Slow Systems... Page 15 of 34 25

Next, recall that for ε > 0 we denote by (Xε(t; ξ, η), Y ε(t; ξ, η)) the solution of the
ODE (1.3).

Corollary 2.5 Assume that (A1)-(A4) hold, that L0,0 can be written as in (1.19) and that SDE
(1.22) has the solution X(t). Then for every f ∈ C0(R

d) and every sequence {εk}k≥0 with
εk → 0 for k → ∞ there exists a subsequence {εkm }m≥0 such that for m → ∞,

f (Xεkm (t; ξ, η)) → E[ f (X(t; ξ))], uniformly in ξ ∈ R
d , η ∈ � ⊂ T

m and t ∈ [0, T̂ ],
where the expectation E is taken with respect to the Wiener measure (defined on 	) of the
Brownian motion W. It follows especially that for any Borel probability measure μ on T

m

we have

E
μ[ f (Xεkm (t))] → E[ f (X(t))] uniformly in t ∈ [0, T̂ ]

Proof The first statement follows immediately from Theorem 2.3, observing that (T ε,0(t) f )
(x) = f (Xε(t; x)) and (T 0,0(t) f )(x) = E[ f (X(t; x))]. The last statement follows from the
dominated convergence theorem. ��
Remark 2.6 Note that if there exists a unique solution to the SDE (1.22), then this is exactly the
Markov process generated by L0,0, but Theorem A does not necessarily need this restriction.
A sufficient condition for existence and uniqness of solutions of the SDE is global Lipschitz
continuity of the drift and diffusion coefficients which follows in the more particular context
of Theorems B and C via the ergodic formulas (1.20), (1.21), (1.27), (1.28) and Assumptions
(A1), (A2). In general, we need Lipschitz continuity of the averaged vector field

ā(x) :=
∫
Tm

a(x, y) dμ0
x (y),

whichdemands sufficiently smooth dependence of the invariantmeasuresμx on the parameter
x . This can be violated, if for example the fast dynamics exhibits bifurcations upon varying x .
In fact, even continuity of ā cannot be guaranteed in such cases. The problem of non-smooth
dependence of the measures μx is known in statistical physics as “no linear response” and
can appear even in relatively simple dynamical systems [8,9,24]. See also the work of Baladi
and coworkers on unimodal maps, i.e., [3,5] and references therein.

Our next natural goal is now to check under which abstract assumptions on the original
ODE problems, the condition (A4) (that is equation (1.14)) is satisfied.

3 Convergence of the Limiting GeneratorL0,ı

In this section we investigate requirements for condition (A4) to hold, which is the main
assumption in Theorem 2.3 and it is also our last missing piece for proving convergence
of the first moments for the slow process for the coupled deterministic systems (1.3). Let
us recall that the operator L0,δ is explicitly given by (1.12) where the drift term Fδ and
the diffusion matrix Aδ are explicitly given by (1.13) and by the alternative expressions in
Lemma 2.2. These alternative expressions use the solution operator φ

δ,t
x solving equation

(1.15). Thus, a first step towards proving (A4) is to understand the behavior of φ
δ,t
x in the

limit δ → 0:

Lemma 3.1 (Behavior of the solution operator asδ → 0) Under the previous assumptions,
the following statements are true:
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(i) For every T > 0 and ω ∈ 	, there exists a positive constant β(T , ω) > 0 (which is
independent of x, y and δ) such that:

|φδ,t
x (y) − φ0,t

x (y)|∞ ≤ √
δβ(T , ω), (3.1)

where | · |∞ denotes the supremum norm in Rm. This implies that for all ω ∈ 	 we have

φδ,t
x (y) → φ0,t

x (y) as δ → 0 uniformly in x, y and t ∈ [0, T ]. (3.2)

Furthermore, it holds that

E[|(φδ,t
x (y)) − φ0,t

x (y)|∞] ≤ √
δβ(T ), (3.3)

where β(T ) := E [β(T , ω)] < ∞
(ii) There exists a version of the stochastic process φ

δ,t
x (y) such that for a.a. ω ∈ 	 the

map x �→ φ
δ,t
x (y) is continuously differentiable for every t and the gradient ∇xφ

δ,t
x (y)

satisfies the linear ODE

d

dt
∇xφ

δ,t
x (y) = ∇x g(x, φ

δ,t
x (y)) + ∇yg(x, φ

δ,t
x (y))∇xφ

δ,t
x (y) ∇xφ

δ,0
x (y) = 0.

(3.4)

Furthermore, for a.a. ω ∈ 	 we have

∇xφ
δ,t
x (y) → ∇xφ

0,t
x (y) as δ → 0 uniformly in x, y and t ∈ [0, T ]. (3.5)

Proof (i) Due to the definition of the solution operator, it follows immediately that for any
t ∈ [0, T ]

|φδ,t
x (y) − φ0,t

x (y)|∞ ≤
∫ t

0
|g(x, φδ,t

x (y)) − g(x, φ0,t
x (y))|∞ ds + √

δ|V (t)(ω)|∞

≤ C(x)
∫ t

0
|φδ,s

x (y) − φ0,s
x (y)|∞ ds + √

δ|V (t)(ω)|∞

≤ C̃
∫ t

0
|φδ,s

x (y) − φ0,s
x (y)|∞ ds + √

δ sup
t∈[0,T ]

|V (t)(ω)|∞
︸ ︷︷ ︸

=:α(T ,ω)

,

where C̃ := supx∈Rd C(x) < ∞ due to the boundedness of ∇x g. Due to Gronwall’s
lemma it follows that for all t ∈ [0, T ]

|φδ,t
x (y) − φ0,t

x (y)|∞ ≤ √
δα(T , ω) exp(CT ) ≤ √

δβ(T , ω), (3.6)

where we have set β(T , η) := α(T , η) exp(CT ). Further we see that

E[β(T , ·)] = eCT
E[α(T , ·)] < ∞,

which implies, by monotonicity of the integral, equation (3.3).
(ii) For the pathwise differentiability of the process φ

δ,t
x see Lemma 2.1 (or [36, Theorem

4.2]). Due to (i) we see further that for a.a. ω ∈ 	

∇x g(x, φ
δ,t
x (y)) → ∇x g(x, φ

0,t
x (y)),

∇yg(x, φ
δ,t
x (y)) → ∇yg(x, φ

0,t
x (y)) as δ → 0 uniformly in x, y and t ∈ [0, T ].

Hence, the last equation is a consequence of continuous dependence of ODEs on the
coefficients.

��
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After having understood the behavior of φδ,t
x in the limit δ → 0we nowwant to come back

to the generator L0,δ given in (1.12). Its coefficients, which use the solution operator φ
δ,t
x ,

are given in Lemma 2.2. Seeing these expressions and Lemma 3.1 one might be tempted to
conclude the convergence of Fδ, Aδ and as a consequence equation (1.14). Unfortunately, it
is not that simple, because for general functions g the expressions F0

0 , F0
1 and A0

0 in Lemma

2.2 will not be well-defined. In fact, they are only then well-defined, when the flow φ
0,t
x (y)

has strong mixing properties. These considerations motivate the following definitions:

Definition 3.2 (Decay of correlations for deterministic systems) We say that the flow φ
0,t
x (y)

is mixing with decay of correlations C(t; x) provided that there exists an α > 0 such that for
all continuous functions v,w : Tm → R, lying in the Hölder space (C0,α, ‖ · ‖α), we have
∣∣∣
∫
Tm

v(z)w(φ0,t
x (z))dμx (z) −

∫
Tm

v(z) dμx (z)
∫
Tm

w(z)dμx (z)
∣∣∣ ≤ C(t; x) ‖ v ‖α‖ w ‖α,

with C(t; x) → 0 as t → ∞ for all x ∈ R
d .

We say that the decay of correlations is summable provided that∫ ∞

0
C(t; x) dt < ∞ for all x ∈ R

d ,

and we say that the decay of correlations is exponential provided that for every x ∈ R
d there

exist constants C(x), ρ(x) > 0 such that

C(t; x) = C(x)e−ρ(x)t .

Remark 3.3 Note that in the special case where either
∫
Tm v(z) dμx (z) = 0 or

∫
Tm w(z)

dμx (z) = 0 holds, summable decay of correlations implies that∫ ∞

0

∣∣∣
∫
Tm

v(z)w(φ0,t
x (z)) dμx (z)

∣∣∣ dt < ∞.

Lemma 3.4 (Decay of correlations for stochastic systems) Fix a δ > 0. For all continuous
functions v,w : Tm → R we have

∣∣∣
∫
Tm

v(z)E[w(φδ,t
x (z))] dμδ

x (z) −
∫
Tm

v(z) dμδ
x (z)

∫
Tm

w(z) dμδ
x (z)

∣∣∣
≤ C̃(δ; x) ‖ v ‖∞‖ w ‖∞ e−ρ(δ;x)t .

In particular, this implies that the stochastic flow has exponential decay of correlations in
the sense of Definition 3.2.

Proof This is an easy application of [38, Theorem 6.16]:
∣∣∣
∫
Tm

v(z)E[w(φδ,t
x (z))] dμδ

x (z) −
∫
Tm

v(z) dμx (z)
∫
Tm

w(z) dμδ
x (z)

∣∣∣
=

∣∣∣
∫
Tm

v(z)
{
E[w(φδ,t

x (z))] −
∫
Tm

w(z̃) dμδ
x (z̃)

}
dμδ

x (z)
∣∣∣

≤
∣∣∣
∫
Tm

v(z)C̃(δ; x) ‖ w ‖∞ e−ρ(δ;x)t dμδ
x (z)

∣∣∣
≤ C̃(δ; x) ‖ v ‖∞‖ w ‖∞ e−ρ(δ;x)t .

This finishes the proof. ��
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Definition 3.5 (Stochastically stable decay of correlations) Let v,w : Tm → R. Assume
that the deterministic flow φ

0,t
x has decay of correlationC(t; x). We say that φ0,t

x has stochas-
tically stable decay of correlations provided that for all small enough δ > 0 and x ∈ R

d

C̃(δ; x)e−ρ(δ;x)t ≤ C(t; x),
where the constants on the left side are as in Lemma 3.4.

These notions allow to prove the following statement concerning F0
0 , F0

1 and A0
0:

Lemma 3.6 Assume that the unperturbed flow φ
0,t
x has summable decay of correlations

C(t; x) and stochastically stable decay of correlations in the sense of Definitions 3.2 and
3.5, and that the centering condition (1.16) is satisfied. Furthermore, consider, for δ ≥ 0, the
well-defined expressions Fδ

1 (x) (2.12), Aδ
0(x) (2.13) and, for g = g(y),

Fδ
0 (x) =

∫ ∞

0
lim

T→∞
1

T

∫ T

0
E[∇xb

(
x, φδ,t (φδ,s(y)(ω))

)
]b

(
x, φδ,s(y)(ω)

)
ds dt, (3.7)

which hold for all y ∈ T
m and a.a. ω ∈ 	 by ergodicity (cf. Lemma 2.2).

Then we have

Fδ
1 → F0

1 , Aδ
0 → A0

0 as δ → 0 uniformly in x, (3.8)

and, in the case that g = g(y), we additionally obtain

Fδ
0 → F0

0 as δ → 0 uniformly in x . (3.9)

Proof Wefirst want to ensure that all considered expressions (2.12), (2.13) and (3.7) are well-
defined for all δ ≥ 0. For (2.12) this is trivial. For (2.13) note that for a.a. ω ∈ 	, due to the
centering condition (1.16), Lemma 3.4 and the stochastic stability we have componentwise
in the tensor product

∣∣∣ lim
T→∞

1

T

∫ T

0
b
(
x, φδ,s

x (y)(ω)
)

⊗ E[b
(
x, φδ,t

x (φδ,s
x (y)(ω))

)
] ds

∣∣∣
=

∣∣∣
∫
Tm

b(x, y) ⊗ E[b(x, φδ,t
x (y)] dμδ

x (y)
∣∣∣

≤ C1(b)C(t; x)
(C1(b) is a constant which depends on b) and analogously for (3.7) in the case that g = g(y).

We now start by estimating the difference Fδ
1 − F0

1 for δ > 0. Let ε > 0 and define, for

T > 0, Fδ,T
1 := 1

T

∫ T
0 a(x, φδ,s

x ) ds. For any δ > 0 we have that

|Fδ
1 − F0

1 | ≤ |Fδ
1 − Fδ,T

1 | + |Fδ,T
1 − F0,T

1 | + |F0,T
1 − F0

1 |.
For each δ > 0 we can fix a T = T0, which is independent of δ and x, y, ω, such that
the first and last difference become smaller that ε

3 . To see this, note that the sequence
1
T

∫ T
0 supδ,x,y,ω |a

(
x, φδ,s

x (y)(ω)
)
|ds is bounded from above and increasing, hence it con-

verges. Moreover, due to Lemma 3.1 and due to the Lipschitz continuity of the vector field
a, we have that

|Fδ,T0
1 − F0,T0

1 | = 1

T0

∫ T0

0
|a(x, φδ,s

x (y)) − a(x, φ0,s
x (y))| ds

≤ √
δC(T0, ω) → 0 for δ → 0. (3.10)
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Hence, for a.a. ω we have

Fδ
1 → F0

1 as δ → 0 uniformly in x, y. (3.11)

Next, for estimating Aδ
0 − A0

0 we we define

ai, jδ (t; x, y, ω) := lim
T→∞

1

T

∫ T

0
bi

(
x, φδ,s

x (y)
)
E

[
b j

(
x, φδ,t

x (φδ,s
x (y))

)]
ds,

ai, j0 (t; x, y, ω) := lim
T→∞

1

T

∫ T

0
bi

(
x, φ0,s

x (y)
)
b j

(
x, φ0,t+s

x (y)
)
ds,

ai, j,Tδ (t; x, y, ω) := 1

T

∫ T

0
bi

(
x, φδ,s

x (y)
)
E

[
b j

(
x, φδ,t

x (φδ,s
x (y)

)]
ds,

ai, j,T0 (t; x, y, ω) := 1

T

∫ T

0
bi

(
x, φ0,s

x (y)
)
b j

(
x, φ0,t+s

x (y)
)
ds.

As before we split

|ai, jδ − ai, j0 | ≤ |ai, jδ − ai, j,Tδ | + |ai, j,Tδ − ai, j,T0 | + |ai, j,T0 − ai, j0 |.
The sequence

1

T

∫ T

0
sup

δ,x,y,ω

∣∣∣bi (x, φδ,s
x (y))E

[
b j

(
x, φδ,t

x (φδ,s
x (y))

)]∣∣∣ ds (3.12)

is bounded from above and increasing, hence it converges for every t . Hence, we can find a
T = T0(t), which is independent of δ and and x, y and ω such that the first and last terms of
equation (3.12) become smaller than ε. With this T0 we have

|ai, j,T0δ (t; x, y, ω) − ai, j,T00 (t; x, y, ω)|

≤ 1

T0

∫ T0

0
|bi

(
x, φδ,s

x (y)
)
E

[
b j

(
x, φδ,t

x (φδ,s
x (y))

)]

− bi
(
x, φ0,s

x (y)
)
b j

(
x, φ0,t+s

x (y)
)
| ds

≤ 1

T0

∫ T0

0

∣∣∣bi
(
x, φδ,s

x (y)
)∣∣∣︸ ︷︷ ︸

≤C1

∣∣∣E
[
b j

(
x, φδ,t

x (φδ,s
x (y))

)
− b j

(
x, φ0,t+s

x (y)
)]∣∣∣︸ ︷︷ ︸

≤√
δC2(t) due to Lemma 3.1

| ds

+ 1

T0

∫ T0

0

∣∣∣∣ b j
(
x, φ0,t+s

x (y)
)

︸ ︷︷ ︸
≤C1

{
bi

(
x, φδ,s

x (y)
)

− bi
(
x, φ0,s

x (y)
)}

︸ ︷︷ ︸
≤√

δC3(T0,ω) due to Lemma 3.1

∣∣∣∣ ds

≤ √
δC4(t, T0, ω) → 0 for δ → 0,

where C1,C2,C3,C4 denote positive constants. Hence, for all t and ω we have

ai, jδ (t; x, y, ω) → ai, j0 (t; x, y, ω) as δ → 0, uniformly in x, y. (3.13)

Due to the assumption on the fast dynamics we know further that for any fixed t, x, y, ω we
have

|ai, jδ (t; x, y, ω)| < C(t; x) for δ sufficiently small. (3.14)
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Using (3.13) and (3.14) we get by the dominated convergence theorem∫ ∞

0
ai, jδ (t; x, y, ω) dt →

∫ ∞

0
ai, j0 (t; x, y) dt as δ → 0. (3.15)

Due to equation (3.13) the convergence is uniform in x ∈ R
d , y ∈ T

m . From (3.15), it follows
that

Aδ
0 → A0

0 as δ → 0 uniformly in x ∈ R
d . (3.16)

Finally, we deal with the difference |Fδ
0 − F0

0 | in case that g is independent of x . Proceeding
as in our previous computations we can verify that

lim
T→∞

1

T

∫ T

0
E

[
∇xb

(
x, φδ,t

x (φδ,s
x (y))

)]
b
(
x, φδ,s

x (y)
)
ds

→ lim
T→∞

1

T

∫ T

0
∇xb

(
x, φ0,t+s

x (y)
)
b
(
x, φ0,s

x (y)
)
ds as δ → 0,

uniformly in x, y and for t ∈ [0, T ]. This implies, due to the stochastically stable decay of
correlations of φ that

Fδ
0 → F0

0 as δ → 0 uniformly in x . (3.17)

This finishes the proof. ��
It remains to deal with the term F0

0 in case g does also depend on x . The crucial ingredients
are equations (1.17) and (1.18) such that we can formulate the following result:

Lemma 3.7 For the case that g = g(x, y) also depends on x, we assume that the unperturbed
flow φ

0,t
x has summable and stochastically stable decay of correlations wrt. an ergodic

invariant measure μ0
x on T

m. Additionally, we assume that the centering condition (1.17)
and, for any y ∈ T

m, the growth condition (1.18) are satisfied.
Then we obtain:

1. Setting

f δ
0 (t, x) := lim

T→∞
1

T

∫ T

0
E

[
∇xb

(
x, φδ,t

x (φδ,s
x (y))

)

+ ∇yb
(
x, φδ,t

x (φδ,s
x (y))

)
∇xφ

δ,t
x (φδ,s

x (y))
]
b
(
x, φδ,s

x (y)
)
ds,

we have that

‖ f 00 (t, ·) ‖∞≤ h(t), for a function h with
∫ ∞

0
h(t) dt < ∞. (3.18)

2. For δ ≥ 0 small enough, h(t) is an upper bound for f δ
0 , the expression

Fδ
0 (x) =

∫ ∞

0
f δ
0 (t, x) dt

is well-defined and we have

Fδ
0 → F0

0 as δ → 0 uniformly in x ∈ R
d . (3.19)

Proof We must first ensure that all expressions Fδ
0 are well-defined. It is easy to see that for

all δ ≥ 0 we have
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∣∣∣ lim
T→∞

1

T

∫ T

0
E

[
∇xb

(
x, φδ,t

x (φδ,s
x (y))

)]
b
(
x, φδ,s

x (y)
)
ds

∣∣∣∞ ≤ C2C(t; x), (3.20)

for a constant C2 > 0. Secondly for δ = 0, we set wx := ∇yb(x, y) and vt,x :=
∇xφ

0,t
x (y)b(x, y) in the definition of decay of correlations and, using condition (1.17), we

observe that
∣∣∣ lim
T→∞

1

T

∫ T

0
E

[
∇yb

(
x, φδ,t

x (φδ,s
x (y))

)
∇xφ

δ,t
x (φδ,s

x (y))
]
b
(
x, φδ,s

x (y)
)
ds

∣∣∣
≤ C(t, x) ‖ wx ‖α‖ vt,x ‖α .

This fact together with the growth assumption (1.18) yields

‖ f 00 (t, ·) ‖∞ ≤ sup
x∈Rd

{
C(t; x)(‖ wx ‖α‖ ∇xφ

0,t
x (·)b(x, ·) ‖α +C2)

}

=: h(t),
∫ ∞

0
h(t) dt < ∞,

which, in particular, implies that F0
0 is well-defined. Furthermore, due to stochastically stable

decay of correlations, proceeding as in Lemma 3.6 (and using also Lemma 3.1 (ii)) we can
show that

f δ
0 → f 00 , ‖ f δ

0 (t, ·) ‖∞≤ h(t).

Finally, we can conclude (3.19) by dominated convergence. ��
This allows us now to conclude the main result of this section, Theorem B.

Proof of Theorem B The statement follows immediately from Lemmas 3.6 and 3.7. ��
Remark 3.8 (i) Condition (1.18) seems to be a relatively strong mixing condition, which

may be difficult to verify for certain practical examples. Indeed, one observes that
∇xφ

δ,t
x (y) solves the first order linear inhomogeneous ODE (3.4). Thus, ∇xφ

δ,t
x (y) can

be calculated by variation of constants and is explicitly given by the formula

∇xφ
δ,t
x (y) = e

∫ t
0 ∇y g(x,φ

δ,τ
x (y)) dτ

( ∫ t

0
e− ∫ s

0 ∇y g(x,φ
δ,τ
x (y)) dτ∇x g(x, φ

δ,s
x (y)) ds + y

)
.

Assuming for simplicity that the matrices e
∫ t
0 ∇y g(x,φ

δ,τ
x (y)) dτ and e− ∫ s

0 ∇y g(x,φ
δ,τ
x (y)) dτ

commute, we obtain from the last equation

|∇xφ
δ,t
x (y)|∞ ≤‖ ∇x g ‖∞

∫ t

0
e‖∇y g‖∞(t−s) ds + e‖∇y g‖∞t .

From this we conclude that

sup
x,y,ω,δ

|∇xφ
δ,t
x (y)|∞ ≤ K e‖∇y g‖∞t ,

where the constant

K :=‖ ∇x g ‖∞
∫ ∞

0
e−‖∇y g‖∞s ds + 1

is independent of t . Thus, the growth condition (1.18) might hold if the unperturbed
flow φ

0,t
x has exponential decay of correlations C(t; x) ≤ Ce−ρt , for all x ∈ R

d , with
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ρ ≥‖ ∇yg ‖∞. This inequality describes precisely the boundary of what we might
optimistically expect as possible decay rates for correlations and a further investigation
is left as an open problem here.

(ii) The centering condition (1.16) might seem a strong assumption at first glance because
it must be satisfied for all δ > 0 and x . However, the parameter δ > 0 has the effect of
only “streching” the invariant density ρδ∞(y; x), so that the function b has to be simply
some function which is in accordance with the symmetry of the invariant densities. The
condition can also be relaxed by allowing the operator L2 to be perturbed as well. More
precisely, assume that the function b satisfies

∫
Tm

b(x, y) dμ0
x (y) = 0, for all x ∈ R

d .

We consider suitable perturbed vector fields bδ satisfying the centering condition (1.9),
for which additionally we have

bδ → b uniformly.

For example, we can consider functions of the form

bδ(x, y) := b(x, y) −
∫
Tm

b(x, z)ρδ∞(z; x)dz

We then define the perturbed operators

Lδ
2u := bδ · ∇xu,

Lε,δ = 1

ε2
Lδ
1 + 1

ε
Lδ
2 + L3

and

L0,δ f := (−PδLδ
2[Lδ

1]−1Lδ
2Pδ + PδLδ

3Pδ) f

and we can repeat the proof of Theorem 2.3 to get the statement.

4 Weakly-Coupled Systems

4.1 Main Result

To provide an intermediate alternative to the strongmixing assumption (see condition (1.18)),
we are also consider a simpler case of so-called weakly-coupled systems. These are systems
with coupling occurring only in lower times scales and they are given by equation (1.23). We
also consider the corresponding stochastic version

dxε

dt
= a(xε, yε) + 1

ε
b(xε, yε), xε(0) = x0,

dyε
dt

= 1

ε2
g(yε) + 1

ε

(
h(xε, yε) + √

δ
dV

dt

)
+ r(xε, yε), yε(0) = y0.

(4.1)

We are going to use now the assumptions (A1)-(A2), (A4)-(A5), and suitable centering an
correlation decay conditions but not (A6) to finally be able to prove Theorem C. For any
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δ > 0 we set

L̃δ
1 := g(y) · ∇y + 1

2
δ I : ∇y∇y,

L̃2 := b(x, y) · ∇x + h(x, y) · ∇y = Lc
2 + Lnc

2 ,

L̃3 = a(x, y) · ∇x + r(x, y) · ∇y,

with the commutative part Lc
2 := b(x, y) · ∇x and the remainder Lnc

2 := h(x, y) · ∇y . The
operator

L̃ε,δ = 1

ε2
L̃δ
1 + 1

ε
L̃2 + L̃3

is the backward Kolmogorov operator associated with the SDE (4.1). Assume that the cen-
tering condition (1.16) is satisfied. Consider the perturbation expansion

uε,δ = uδ
0 + εuδ

1 + ε2uδ
2 + · · · (4.2)

which we substitute into the backward Kolmogorov equation

duε,δ

dt
= L̃ε,δuε,δ :=

( 1

ε2
L̃δ
1 + 1

ε
L̃2 + L̃3

)
uε,δ. (4.3)

Via the perturbation analysis given in Sect. B of the Appendix, we arrive at the following
equation for the leading order uδ

0

duδ
0

dt
= F̃δ · ∇xu

δ
0 + 1

2
Aδ(x)Aδ(x)� : ∇x∇xu

δ
0. (4.4)

Here the drift coefficient in the homogenized equation (2.10) now changes to

F̃δ(x) :=
∫
Tm

(
a(x, y) + ∇x

δ(y; x)b(x, y) + ∇y
δ(y; x)h(x, y)

)
ρδ∞(y; x) dy (4.5)

and the diffusion coefficient Aδ(x) remains unchanged

Aδ(x)Aδ(x)� = 1

2

(
Aδ
0(x) + Aδ

0(x)
�)

,

Aδ
0(x) = 2

∫
Tm

(
b(x, y) ⊗ δ(y; x)

)
ρδ∞(y; x) dy.

(4.6)

Note that (see for example [38, Result 11.8]) the solution δ of the cell problem admits the
representation formula

δ(y; x) =
∫ ∞

0
E

[
b(x, φδ,t (y))

]
dt,

where the stochastic process φδ,t (y) satisfies equation (1.24) and the term E[b(x, φδ,t (y))]
decays exponentially fast as t → ∞ (see [38, Theorem 6.16]). The above considerations
allow us to repeat the arguments from the previous sections and we get following theorem.

Theorem 4.1 (Convergence of the slow process for weakly-coupled systems) Assume
(A1)-(A2) and that the unperturbed flowφ0,t has summable stochastically stable decay of cor-
relations C(t) in the sense of Definitions 3.2 and 3.5. Furthermore, assume that the centering
condition (1.16) is satisfied and define the operator L̃0,δ on C2

c (R
d) by

L̃0,δu := F̃δ · ∇xu + 1

2
Aδ(x)Aδ(x)� : ∇x∇xu. (4.7)
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In the case that h does not vanish everywhere, we assume additionally that the centering
condition (1.17) and the growth condition (1.25) hold.

Then following statements are true:

(i) There exist vector fields F̃0(x) and A0(x) such that

F̃δ → F̃0, Aδ → A0, uniformly in x as δ → 0, (4.8)

where A0 is explicitly given by (1.27) and the vector field F̃0 is given by (1.28).
(ii) For every f ∈ C2

c (R
d)

lim
δ→0

L̃0,δ f = L̃0,0 f uniformly, (4.9)

where the operator L̃0,0 is defined by

L̃0,0u := F̃0 · ∇xu + 1

2
A0(x)A0(x)� : ∇x∇xu, (4.10)

and ¯̃L0,0 generates the strongly continuous semigroup T (t)0,0 on X.
(iii) Let T ε,δ be the semigroup on Ĉ(Rd×T

m) generated by L̄ε,δ . Then for every f ∈ C0(R
d)

and every sequence {εk}k≥0 with εk → 0 for k → ∞, there exists a subsequence
{εkm }m≥0 such that

lim
m→∞ sup

0≤t≤T̂

‖ T εkm ,0(t) f − T 0,0(t) f ‖∞= 0. (4.11)

(iv) For ε > 0 let (Xε(t; ξ, η), Y ε(t; ξ, η)) be the solution of the ODE (1.23).

Then for every initial condition f ∈ Ĉ(Rd) and every sequence {εk}k≥0 with εk → 0
for k → ∞, there exists a subsequence {εkm }m≥0 such that

f (Xεkm (t; ξ, η)) → T 0,0(t) f (ξ), uniformly in ξ ∈ R
d , η ∈ � and t ∈ [0, T̂ ].

Proof The arguments needed for the proof are identical with those given in Sects. 2 and 3.
Thus we omit their exact repetition. We only want to note that in the case that h ≡ 0 the
term ∇y

δ(x, y)h(x, y) in (4.5) vanishes, so that we can repeat the arguments from Lemma
3.6 to get the first statement. In the general case that h does not vanish everywhere, the
term ∇y

δ(x, y)h(x, y) in equation (4.5) cannot be neglected. Thus we need to pose the
additional assumptions (1.17) and (1.25) (which ensure especially that the expression∫ ∞

0

∫
Tm

E

[
∇yb(x, φ

δ,t
x (y))∇yφ

δ,t
x (y)

]
h(x, y)ρδ∞(y; x)dydt < ∞

is well-defined) and then we proceed as in Lemma 3.7 to get the first statement also for this
case. Finally we note that for the second statement we repeat the arguments from Theorem B,
for the third statement we need to repeat the proof of Theorem 2.3 and for the last statement
see the proof of Corollary 2.5. ��
Aswe can see from the formulation of Theorem (4.1), we do not have to assume any additional
growth condition for φ0,t in case h in (4.1) vanishes. If h �= 0, the assumed growth con-
dition (1.25) for the weakly-coupled system is clearly weaker than growth condition (1.18)
for the more general case: in (1.18), the integrability has to hold uniformly over all x ∈ R

d ,
whereas φ0,t does not depend on x in the weakly-coupled situation, hence the simplification
to (1.25).
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t

X
ε,

δ
(t
)

ε = 0.8

(a)
t

X
ε,

δ
(t
)

ε = 0.05

(b)

Fig. 1 Sample paths of the process Xε,δ satisfying equation (4.13), with the initial condition

[x0, y01 , y02 , y03 ]� = [0, 13.93, 20.06, 26.87]�, for ε = 0.8 (a) and ε = 0.05 (b), for different values
of δ

4.2 Numerical Example

As an application of the previous Sect. 4.1, we consider a weakly-coupled system onR×R
3

with chaotic fast dynamics on the Lorenz attractor. Let us recall that the classical Lorenz
equations are given by the three-dimensional ODE system

dy1
dt

= s(y2 − y1),

dy2
dt

= ρy1 − y2 − y1y3,

dy3
dt

= y1y2 − β y3,

(4.12)

with the parameters s, ρ, β > 0, where, in particular, s is called the Prandtl number and
ρ is called the Rayleigh number. For the standard values s = 10, ρ = 28, β = 8/3, the
equations are ergodic with invariant measure μ supported on the Lorenz attractor �. We
now consider, motivated by [38, Section 11.7.2] and [22, Section 6.4], the following weakly-
coupled systems on R × R

3:

dXε,δ

dt
= −Xε,δ + 1

ε

4

90
Y ε,δ
2

dY ε,δ
1

dt
= 10

ε2
(Y ε,δ

2 − Y ε,δ
1 ) + Xε,δY ε,δ

3 + δ
dU

dt

dY ε,δ
2

dt
= 1

ε2
(28Y ε,δ

1 − Y ε,δ
2 − Y ε,δ

1 Y ε,δ
3 ) − Xε,δ + δ

dV

dt

dY ε,δ
3

dt
= 1

ε2
(Y ε,δ

1 Y ε,δ
2 − 8

3
Y ε,δ
3 ) + Xε,δY ε,δ

1 Y ε,δ
2 + δ

dW

dt
.

(4.13)

In Fig. 1 sample paths of the process Xε,δ solving (4.13) for different values of ε and δ are
shown. These paths illustrate that the deterministic flow displays stochastic-looking/chaotic
oscillations but one does really need to look at the limiting behaviour as ε → 0 to fail to see
the visual difference between a deterministic and a stochastic process.
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Fig. 2 Averages of the process Xε,0(t) satisfying equation (4.13) for different values of ε > 0 and theoretical
average for ε = 0, i.e. for the limiting process X(t) satisfying (4.15) with the initial condition ξ = 0. The
averages are taken over 500 different realizations on the Lorenz attractor. In a convergence of averages for
ε = 0.8, 0.3, 0.08 is shown, while in b the continuation of the converging behaviour on a smaller scale for
ε = 0.08, 0.05 is illustrated

The fast subsystem has the ergodic measure μ supported on the Lorenz attractor �. Let
Q ⊂ R

3 be a sufficiently large cube containing �. By identifying the opposite sides of the
cube and rescaling the coordinates we can assume, without loss of generality, that Q = T

3

is the torus, so that the theory from the previous sections can be applied. We note further that
it has been already verified numerically in [22] that the y2 coordinate has zero average with
respect to μ and as a consequence that the centering condition (1.4) is satisfied. Theorem 4.1
states that for every f ∈ C0(R) and every sequence {εk}k≥0 with εk → 0 for k → ∞ there
exists a subsequence {εkm }m≥0 such that

E
μ[ f (Xεkm ,0(t))] → E[ f (X(t))] as m → ∞ uniformly in t ∈ [0, T̂ ], (4.14)

where the process X solves the SDE

dX

dt
= −X + σ

dW

dt
, X(0) = ξ. (4.15)

Note that equation (4.15) describes an Ornstein-Uhlenbeck process which has the unique
solution given by

Xt = e−tξ + σe−t
∫ t

0
eτ dWτ .

In general we know that for a square integrable function f on [0, T ], the random variable∫ T
0 f (t) dWt is normally distributed with variance

∫ T
0 f (t)2 dt and from this fact it is easy

to see that Xt is normally distributed with

Xt ∼ N (e−tξ,
σ 2

2
e−2t (e2t − 1)).

The exact value of σ is given by formula (1.28). In the following we use the estimate σ 2 �
0.126 calculated in [22].

Furthermore, since C0(R) ⊂ Cb(R), equation (4.14) is slightly weaker than uniform
convergence in distribution of the process Xεkm ,0(t) towards X(t). The following Figs. 2 and
3 verify equation (4.14) numerically.
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Histogram of Xε,0(10)

(a)

Histogram of Xε,0(0.5)

(b)

Fig. 3 Histograms of the process Xε,0(t), corresponding with Fig. 2, taking ε = 0.8, 0.3, 0.08 at time t = 10
(a) and again ε = 0.08, 0.05 at time t = 0.5 (b) satisfying equation (4.13), in comparison to the distribution
of the limiting process X(t), solving (4.15) with the initial condition ξ = 0. We used ensembles of 500
realizations

Figure 2 shows that equation (4.14) is satisfied for f being the identity function (note
that, since the process Xε,0 is uniformly bounded for every ε ≥ 0.05, we can assume without
loss of generality that f coincides with the identity function only in a compact interval and
that f ∈ C0(R)). Appart from that, Fig. 3 suggests that we actually have convergence in
distribution of the slow process Xε,0, satisfying the chaotic ODE (4.13) (for δ = 0), towards
the limiting stochastic process X satisfying the SDE (4.15), which is a reduced stochastic
equation for the slow process Xε,0. This illustrates the reduction effect one is looking for
since now the chaotic fast degrees of freedom are encoded in a low-dimensional SDE.

5 Conclusion and Outlook

In this paper we have extended results on deterministic homogenization of fast-slowODEs to
the case where coupling of the fast and slow variables is part of the model. Our main strategy
was to add small stochastic noise to the fast subsystem and then take two independent limits
— namely the zero-noise limit and the limit ε → 0 —, which enabled us to use results and
functional-analytical methods from stochastic systems. For generally coupled systems, we
have succeeded to prove a certain weak form of convergence of the slow process, similarly to
uniform convergence of the first moments, requiring strong mixing assumptions on the fast
flow. However, for the intermediate case of weakly-coupled systems, the mixing assumptions
are relatively mild. Our method also directly yields explicit expressions for the drift and
diffusion coefficients of the limiting SDE.

This paper can be seen as one of the first steps to understand homogenization of cou-
pled fast-slow systems in continuous time and leaves open several relevant questions for
further research. One task is to find, numerically and/or analytically, more direct examples
from applications for which the strong mixing condition (1.25) is satisfied. Moreover, the
key assumption of stochastically stable DOC in the sense of Definition 3.5 needs to be
investigated. Another goal will be to find alternative representations of the drift and diffu-
sion coefficients of the limiting diffusion, such that potentially weaker or even no mixing
assumptions are required, as seen in [26,27]. In addition to that, it will be crucial to study the
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behavior of the higher moments of the slow process in order to prove weak convergence of
the respective measures in C([0, T ],Rd).
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A Convergence of the Semigroup T�,ı as � → 0

Let X be a Banach space.

Definition A.1 Let {S(t)}t≥0 be a strongly continuous semigroup on X with infinitesimal
generator L . {S(t)}t≥0 is called an ergodic semigroup if

lim
λ→0

λ

∫ ∞

0
e−λt S(t) f dt = P f exists for all f ∈ X . (A.1)

We call P the projection corresponding to the semigroup.

Remark A.2 A sufficient condition for (A.1) to hold is that limt→∞ S(t) f exists for every
f ∈ X and then we also have that

P f = lim
t→∞ S(t) f , f ∈ X . (A.2)

Using semigroup notation we can rewrite the last equation as

eLt · → P · as t → ∞. (A.3)

See also [18, Remark 7.5].

Lemma A.3 For any fixed δ > 0 consider the operators Lε,δ and Lδ
1 defined as in (1.6) on

C2
c (R

d×T
m). Let X := (C0(R

d×T
m), ‖ · ‖∞) be the Banach space of continuous functions,

which vanish for ‖ x ‖2→ ∞. Then the following statements are true

(i) Lε,δ generates a strongly continuous contraction semigroup (T ε,δ(t))t≥0 on X.
(ii) Lδ

1 generates an ergodic, strongly continuous contraction semigroup (Sδ(t))t≥0 on X.

Proof (i) Let ψt (x, y) denote the solution map of the SDE corresponding to the generator
Lε,δ . For f ∈ X define

T ε,δ(t) f (x, y) := E[ f (ψt (x, y))].
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Note that due to our smoothness assumptions on a, b, g, φε
t (x, y) is continuous with respect

to the initial condition (x, y). We know check that:
(i-a)

T ε,δ(t) : X → X .

To see this, we first note that if (x, y) → (x0, y0) in R
d × T

m , then ψt (x, y) → ψt (x0, y0)
which implies due to the dominated convergence theorem, using that f is bounded, that

|(T ε,δ(t) f )(x, y) − (T ε,δ f )(x0, y0)| =
∣∣∣E

(
f (ψt (x, y)) − f (ψt (x0, y0))

)∣∣∣ → 0.

Hence, T ε,δ(t) f ∈ C(Rd × T
m). Similarly, using that ψ0(x, y) = (x, y) it is easy to see

that for every fixed y ∈ T
m and t ∈ R+ we have that ‖ x ‖2→ ∞ ⇒‖ ψt (x, y) ‖2→ ∞ ⇒

f (ψt (x, y)) → 0, which implies by dominated convergence that

(T ε,δ f )(x, y) = E[ f (ψ t (x, y))] → 0 as ‖ x ‖2→ ∞.

Hence, T ε,δ(t) f ∈ X .
(i-b)

T ε,δ(t + s) f = T ε,δ(t)T ε,δ(s) f , T ε(0) = Id.

This follows immediately from the semigroup property of the solution map ψt .
(i-c)

lim
t→0+ ‖ T ε,δ(t) f − f ‖∞= 0.

Assume first for simplicity that f ∈ C2
c (R

d × T
m). Due to the Itô formula we have that

f (ψt (x, y)) = f (x, y) +
∫ t

0
Lε f (ψs(x, y))ds + Mt ,

where Mt is a martingale (which implies that E[Mt ] = 0). Thus, taking expectations we
have

|(T ε,δ(t) f )(x, y) − f (x, y)| ≤ E[
∫ t

0
|Lε,δ f (ψs(x, y))| ds].

Note that there exists a constantCε, which depends only on the coefficients of Lε,δ such that

||Lε,δ f ||∞ ≤ Cε (‖ f ‖∞ + ‖ ∇ f ‖∞ + ‖ ∇2 f ‖∞)︸ ︷︷ ︸
<∞, since f ∈C2

c (Rd×Tm )

< ∞.

Hence

‖ (T ε,δ(t) f )(x, y) − f (x, y) ‖∞≤ tCε → 0 as t → 0+.

Last equation implies strong continuity inC2
c (R

d×T
m), thus by density also inC0(R

d×T
m).

(i-d)

‖ T ε,δ(t) f ‖∞≤‖ f ‖∞ .

This is easy to see. All in all, Lε,δ generates a strongly continuous contraction semigroup on
X .
(ii)Analogously we can show thatLδ

1 generates a strongly continuous contraction semigroup
Sδ(t)t≥0 on X . For the ergodicity it suffices to show (see also [18, Remark 7.5])
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(ii-e)

Sδ(t) f → Pδ f in X as t → ∞, (A.4)

where Pδ is the projection given by (2.7) Let ψ̃t (x, y) denote the flow of the SDE corre-
sponding to Lδ

1. Observe that due to the structure of the generator, the flow has the form

ψ̃t (x, y) = (x, φδ,t
x (y)),

where φ
δ,t
x (y) solves (1.15). Due to [38, Theorem 6.16] we have

‖ Sδ(t) f (x, y) − Pδ f (x, y) ‖∞≤ C ‖ f ‖∞ e−λt → 0 as t → ∞,

since the constant C can be chosen to be independent of x, y (due to the uniform bounds on
the coefficients of the SDE). This proves the ergodicity of the semigroup Sδ(t) on X . ��
Theorem A.4 [18, Chapter 12, Theorem 2.4] Fix a δ > 0 and let Lε,δ be the the operators
as in (1.6). Define Pδ by (2.7) and assume that the centering condition (1.9) is satisfied for
all x ∈ R

d . Furthermore let δ be the solution of the cell problem (1.10). Define

D := C2
c (R

d) ⊂ X .

For every f ∈ D let h ∈ X denote the unique solution of the Poisson equation

Lδ
1h = −L2Pδ f ,

∫
Tm

h(x, y)ρδ∞(y; x) dy = 0, (A.5)

whose existence and uniqueness is guaranteed due to the centering condition and the Fred-
holm alternative and let L0,δ be the operator defined on D by (2.9). Assume that the closure¯L0,δ generates a strongly continuous contraction semigroup {T (t)0,δ}t≥0 on C0(R

d). Then
we have for every f ∈ D̄ and finite times T̂ < ∞

lim
ε→0

sup
0≤t≤T̂

‖ T ε,δ(t) f − T (t)0,δ f ‖∞= 0. (A.6)

Proof The proof is taken from [18, Chapter 12, Theorem 2.4] but is included for convenience.

From Lemma A.3 follows that L̄δ
1 generates the ergodic strongly continuous contraction

semigroup {S(t)δ}t≥0 on X and L̄ε generates the strongly continuous contraction semigroup
{T ε,δ(t)}t≥0 on X . We define

D(Lδ
1) := { f ∈ L : ∀x : f (x; ·) ∈ C2(Tm)}

D(L2) := { f ∈ L : ∀y : f (·; y) ∈ C1
c (R

d)}
D(L3) := { f ∈ L : ∀y : f (·; y) ∈ C1

c (R
d)}.

We observe that

D ⊂ D(Lδ
1) ∩ D(L2) ∩ D(L3).

Define further

D(V ) := {L2 f : f = f (x) ∈ C2
c (R

d)}
and

R(V ) := { f ∈ C2,0
c (Rd × T

m) : f (x, ·) ∈ C2(Tm),Lδ
1 f ∈ L}
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and the operator V : D(V ) → R(V ), acting via

V ( f ) := δ(y; x) · ∇x f (x).

Note that since b and the coefficients of L1 are smooth and L1 is uniformly elliptic,  is
smooth in both arguments (See also [38, Lemma 17.2] for a similar situation). Having this in
mind, it is easy to check that R(V ) ⊂ D(Lδ

1) ∩D(L2) ∩D(L3) and recalling the definitions
of δ and Lδ

1 we also see that h = V ( f ) solves the Poisson equation

Lδ
1V ( f ) = −L2 f = −L2P f ,

∫
Tm

h(x, y)ρδ∞(y; x) dy = 0.

Hence,

D ⊂ { f ∈ D(Lδ
1) ∩ D(L2) ∩ D(L3) : ∃h ∈ D(Lδ

1) ∩ D(Lδ
1) ∩ D(Lδ

1) : Lδ
1h = −L2 f }.

The claim follows now from [18, Chapter 1, Corollary 7.8], setting A := L2, � := L3 and
B := Lδ

1. ��

B Perturbation Analysis for Weakly-Coupled Systems

In the following we follow [38] and [22]. We provide the perturbation expansions here for
completeness as they are the most convenient tool to formally derive the correct limiting
behavior. Substituting (4.2) into the backward Kolmogorov equation (4.3) and collecting
terms of the same powers we obtain a sequence of problems:

O(
1

ε2
) : L̃δ

1u
δ
0 = 0 (B.1)

O(
1

ε
) : L̃δ

1u
δ
1 = −Lc

2u
δ
0 (B.2)

O(1) : L̃δ
1u

δ
2 = duδ

0

dt
− L̃2u

δ
1 − L̃3u

δ
0,

... (B.3)

From equation (B.1) it follows, due to the ergodicity property (1.7) for L̃δ
1, that the solution

uδ
0 does not depend on y, in other words it is of the form

uδ
0(x, y, t) = uδ

0(x, t).

To solve the second equation note that the centering condition (1.16) implies that Lc
2u

δ
0 is

orthogonal to the null space of
(
L̃δ
1

)∗
. Thus, by the Fredholm alternative equation (B.2) is

solvable and the solution is unique up to a constant lying in the null space of L̃δ
1. We fix this

constant by requiring
∫
Tm

uδ
1(x, y)ρ

δ∞(y; x) dy = 0 for all x ∈ R
d . (B.4)

Thus we can write formally

uδ
1 = −

(
L̃δ
1

)−1
Lc
2u

δ
0(x, t). (B.5)
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We continue with the last equation (B.3). Solvability requires that the right side is orthogonal
to the null space of L1 and this leads the following equation for uδ

0(x, t):

duδ
0

dt
(x, t) =

∫
Tm

ρδ∞(y; x)L̃3u
δ
0(x, t) dy −

∫
Tm

ρδ∞(y; x)L̃2

(
L̃δ
1

)−1
L̃2u

δ
0(x, t) dy

=
(
PδL̃3Pδ − PδL̃2

(
L̃δ
1

)−1
L̃2Pδ

)
uδ
0(x, t). (B.6)

In this way we obtained a closed equation for the dominant term uδ
0 but we still have to

evaluate the operators involved in it. Recall that δ denotes the solution of the cell problem
(1.10). Thus, coming back to equation (B.2), we observe that u1 must have due to (B.4) the
form

uδ
1(x, y, t) = δ(y; x) · ∇xu

δ
0(x, t). (B.7)

Hence,

L̃2u
δ
1 = b ⊗  : ∇x∇xu

δ
0 + (∇xb) · ∇xu

δ
0︸ ︷︷ ︸

=Lc
2u1

+ (∇yh) · ∇xu
δ
0︸ ︷︷ ︸

=Lnc
2 uδ

1

,

Equation (B.6) can be now re-written as

duδ
0

dt
= PδL̃3u

δ
0 − PδL̃2 L̃−1

1 L̃2u
δ
0︸ ︷︷ ︸

=−uδ
1

= I1 + I2, (B.8)

with

I1 =
∫
Tm

a(x, y)ρδ∞(y; x) dy · ∇xu
δ
0(x, t)

and

I2 =
∫
Tm

ρδ∞(y; x)
(
b(x, y) ⊗ δ(y; x) : ∇x∇xu

δ
0(x, t)

)
dy

+
∫
Tm

ρδ∞(y; x)
(
∇x

δ(y; x)b(x, y)
)

· ∇xu
δ
0(x, t) dy

+
∫
Tm

ρδ∞(y; x)
(
∇x

δ(y; x)h(x, y)
)

· ∇xu
δ
0(x, t) dy.

Putting everything together we get (4.4).
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