Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled by thenon-Markovian version of the Langevin equation that includes an arbitrary memory function. When averagedover cells, the velocity distribution exhibits spurious non-Gaussian behavior, while single cells are characterizedby Gaussian velocity distributions. Accordingly, the data are described by a linear memory model whichincludes different random walk models that were previously used to account for various aspects of cell motilitysuch as migratory persistence, non-Markovian effects, colored noise, and anomalous diffusion. The memoryfunction is extracted from the trajectory data without restrictions or assumptions, thus making our approachtruly data driven, and is used for unbiased single-cell comparison. The cell memory displays time-delayedsingle-exponential negative friction, which clearly distinguishes cell motion from the simple persistent randomwalk model and suggests a regulatory feedback mechanism that controls cell migration. Based on the extractedmemory function we formulate a generalized exactly solvable cell migration model which indicates thatnegative friction generates cell persistence over long timescales. The nonequilibrium character of cell motionis investigated by mapping the non-Markovian Langevin equation with memory onto a Markovian model thatinvolves a hidden degree of freedom and is equivalent to the underdamped active Ornstein-Uhlenbeck process.