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Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled
by the non-Markovian version of the Langevin equation that includes an arbitrary memory function.
When averaged over cells, the velocity distribution exhibits spurious non-Gaussian behavior, while
single cells are characterized by Gaussian velocity distributions. Accordingly, the data are described
by a linear memory model which includes different random walk models that were previously used
to account for various aspects of cell motility such as migratory persistence, non-Markovian effects,
colored noise and anomalous diffusion. The memory function is extracted from the trajectory data
without restrictions or assumptions, thus making our approach truly data-driven, and is used for
unbiased single cell comparison. The cell memory displays time-delayed single-exponential negative
friction, which clearly distinguishes cell motion from the simple persistent random walk model and
suggests a regulatory feedback mechanism that controls cell migration. Based on the extracted
memory function we formulate a generalized exactly solvable cell migration model which indicates
that negative friction generates cell persistence over long time scales. The non-equilibrium character
of cell motion is investigated by mapping the non-Markovian Langevin equation with memory onto
a Markovian model that involves a hidden degree of freedom and is equivalent to the underdamped
active Ornstein-Uhlenbeck process.

I. INTRODUCTION

The motion of single eukaryotic cells and bacteria is
important for their survival and functioning and consti-
tutes a characteristic phenotype. Also in multicellular
organisms, single-cell motion is relevant for immunogenic
response, embryonic development and cancer metastasis
[1–4]. The quantitative modeling of cell motility has pro-
gressed hand in hand with experimental techniques that
allow for the automated tracking of single cells in differ-
ent environments. The persistent random walk (PRW)
model is conceptually simple, analytically solvable and
has been shown to account for many characteristic fea-
tures of the motion of cells, bacteria and entire organ-
isms, in particular the crossover from ballistic motion at
short times to diffusive motion at long times [5–8]. With
increasing data quality, deviations from the simple PRW
behavior have moved into the focus [9–13].

The PRW model is described by a linear Langevin
equation with Gaussian white noise and thus implies
Gaussian distributed velocities. However, cell migra-
tion data typically exhibit non-Gaussian velocity or step
size distributions, which suggests the presence of non-
linearities. Non-linear terms in the Langevin equation
can reside in the deterministic or in the stochastic part,
the latter is referred to as multiplicative noise, and have
been shown to account for various motility properties
of living matter [14–16]. An alternative explanation
for non-Gaussian distributions was recently provided by
single-cell motility analysis: while individual cell data
were shown to be Gaussian, the significant deviations of
the velocity distributions from cell to cell were demon-
strated to lead to non-Gaussian behavior of the average
over cells [17]. Since most motility analyses are based
on averages over many cells or organisms, it is therefore

not clear whether the often observed non-Gaussian be-
havior of averages is due to cell-to-cell variations or due
to intrinsic non-linear single-cell properties.

Besides being linear, the PRW model predicts a veloc-
ity auto-correlation function (VACF) that decays single-
exponentially in time. In many experiments, multi-
exponential or even power-law decay of the VACF has
been seen [18, 19], which hints to memory and colored
noise effects. On the other hand, multi-exponential time
correlations can also be caused by non-linearities in the
stochastic model. So the situation is quite complex,
since non-linearities in the stochastic equations and non-
Markovian (i.e. colored-noise) effects can lead to similar
signatures in the resulting trajectories. The analysis of
a general model that would include all these effects is
analytically not possible and necessarily involves numer-
ical techniques and a large number of different param-
eters. The main problem however is that experimental
data typically do not allow for a unique determination
of model parameters, since the organism life time and
the sampling rate is limited and also since properties of
individual cells vary in a given population. An addi-
tional complication is produced by the fact that living
cells and organisms are non-equilibrium objects and thus
fundamental statistical mechanics theorems, such as the
fluctuation-dissipation relation, do not apply [20]. This
means that in the description of motility data in terms
of stochastic differential equations, even more parameters
are present than for an equilibrium system.

What is direly needed is a data-based, unbiased anal-
ysis of experimental motility data which is able to deal
with all the above mentioned effects. Here, we intro-
duce such a method, which is based on the generalized
Langevin equation (GLE) [21–23]. The GLE has found
ample applications in the modeling of molecular sys-
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tems [24–26], microrheological data [27, 28] and of non-
Markovian dynamics along generalized reaction coordi-
nates [26, 29–33]. The GLE includes colored noise and
accounts for non-Markovian effects by a memory kernel
that describes for how long the system remembers its
past states. We extract the memory kernel from cell tra-
jectory data without prior assumptions on the functional
form of the memory function, and compare the memory
functions on the single-cell level. The Gaussian character
of the single-cell velocity distributions allows us to use the
linear Langevin equation, but we note that our memory-
extraction method in principle also works for non-linear
systems [26].

Our study employs one-dimensional cell migration on
micro-contact printed tracks [34, 35]. Specifically, we an-
alyze a large data set of human breast cancer cells on ho-
mogeneous circular tracks, which is a setup we previously
introduced and which has the advantage that long, one-
dimensional time traces of many cells can be monitored
without mutual interference [36]. The single-cell analy-
sis reveals stationary statistics as well as almost perfect
Gaussian velocity distributions with significant cell-to-
cell variations. This means that inhomogeneous effects in
time (i.e. time-dependent variations of cell properties) as
well as multiplicative noise effects are absent. The VACF
data exhibit significant non-exponential decay with time,
which in the absence of non-Gaussian statistics is unam-
biguously traced back to non-Markovian memory effects.
We extract the memory function from single-cell data
as well as from data that is averaged over all cells, the
good qualitative agreement of the resulting memory func-
tions demonstrates that the main non-Markovian fea-
tures are robust even in the presence of significant cell-
to-cell variability. The memory function consists of an
instantaneous friction contribution and a negative single-
exponential part which decays over a few minutes. The
GLE for such a memory kernel can be solved analytically,
which allows us to investigate the migratory behavior of
a general class of non-Markovian cell models. We find
that negative exponentially decaying friction generates
cell persistence on long time scales. Our correlation anal-
ysis of single-cell migratory parameters such as cell speed,
cell diffusivity and cell persistence reveals large spreading
and only weak correlations, in particular, the cells do not
partition into separate clusters. In contrast, strong corre-
lations between memory function parameters are present,
which gives rise to enhanced migratory persistence. We
also consider effects due to finite-time discretization and
due to localization noise, and show that our memory ex-
traction methods are robust with respect to these two
omnipresent experimental effects.

By an exact mapping, we demonstrate that the non-
Markovian memory function we extract from the cell data
can be obtained from different Markovian equilibrium
and non-equilibrium two-dimensional stochastic models
in the presence of white noise. As we explain in detail,
this mapping is not unique, meaning that there are many
different Markovian models that give rise to the same

non-Markovian dynamics. Nevertheless, such a mapping
allows to investigate possible biochemical reaction net-
works that might underly the observed migratory dy-
namics and to characterize classes of equivalent Marko-
vian models. By this, our approach goes considerably
beyond the mere fitting of model predictions to exper-
imental data. We anticipate future applications of our
methods to time series data from a broad class of differ-
ent active systems.

II. RESULTS AND DISCUSSION

Experimental trajectories:

MDA-MB-436 human breast cancer cells are confined
to circular microlanes of mean radius r0 = 50 µm and
width 20 µm, see inset of Fig. 1(a). This mesenchymal
cell line serves as a model system for cells with robust
motility. Circular microlanes have the advantage that
cells do not move out of the field of view, which enables us
to generate long trajectories of single cells with a duration
that is limited only by the division time of the cells. The
effect of lane curvature on cell migratory behavior was re-
cently studied and found to be moderate [37]. The width
of the microlane is chosen to be slightly smaller than the
cell diameter, which produces quasi one-dimensional mo-
tion of the confined cells. The cell position is determined
as the center of fluorescence of the labelled cell nuclei.
As a tradeoff between good statistics and limited photo
stress on the cell, fluorescence images of many different
cells are recorded in parallel every ∆ = 2.5 minutes (see
Appendix A for further details). Figure 1(a) shows exam-
ple trajectories x(t) = r0ϕ(t), where ϕ(t) is the angular
position of the cell nucleus. We record N = 125 trajecto-
ries up to a maximal time of T = 2155 minutes, the inset
in Fig. 1(b) shows the trajectory length distribution.
Some cells divide, die or occasionally leave the microlane
during the recording period, resulting in a broad distri-
bution of trajectory lengths. The experimental methods
have been described before [36].
Single-cell velocities are estimated by position differ-

ences according to vi(t) = (xi(t+∆/2)−xi(t−∆/2))/∆
where i = 1 . . . N denotes different cells. The time-
dependent squared cell velocity averaged over all cells is
shown in Fig. 1(b) and turns out to be rather constant for
times larger than 2 hours. This indicates that cell motion
is stationary for long times (non-stationary cell dynam-
ics has been considered in previous works [38, 39]). We
therefore discard the data for the first two hours (shown
in red) for all further analysis (see Appendix B for further
details).
The velocity distributions for all cells are shown in Fig.

1(c), where different colors denote different cells, together
with a Gaussian determined by the mean and mean-
squared cell velocities. The inset demonstrates that the
mean velocities, v̄i, and in particular the standard devi-
ation of the velocity for individual cells, σi, scatter sig-
nificantly. In Fig. 1(d) the cell velocity distributions are
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plotted versus the rescaled velocity coordinate (vi−v̄i)/σi

that takes into account the individual cell statistics. The
distributions are seen to follow a Gaussian (solid line)
much more accurately. This is corroborated in Fig. 1(e)
where we plot the cell-averaged velocity distribution ver-
sus (vi − ¯̄v)/σ̄ (blue crosses) and versus (vi − v̄i)/σi (red
spheres), where ¯̄v and σ̄ are the mean velocity and the
velocity standard deviation averaged over all cells. The
latter way of plotting the data shows very little devi-
ation from a Gaussian. We conclude that single cells
are described within a good approximation by Gaussian
velocity distributions, that exhibit considerable varia-
tion between different cells, which, when averaged over
many cells, give rise to significant non-Gaussian effects,
in agreement with earlier observations [17]. This means
that when a theory is constructed on the single-cell level,
non-Gaussian effects can for the present data set safely be
neglected. This follows from the fact that multiplicative
noise, i.e. when the noise term in the Langevin equation
is multiplied by a velocity-dependent function, can by a
non-linear transformation be shown to produce an effec-
tive (and in general non-linear) free energy contribution
[40].
Non-Markovian Langevin model: We describe

cell dynamics by the non-equilibrium version of the
one-dimensional generalized Langevin equation (GLE)
[23, 41]

v̇(t) = −U [x(t)]−
∫ t

−∞

dsΓv(t− s)v(s) + FR(t), (1)

where v(t) denotes the tangential velocity of the cell on
the microlane and Γv(t) is the memory kernel which ac-
counts for non-Markovian effects and describes how the
change in velocity depends on the velocity history. For
Newtonian dynamics the particle massm appears in front
of the acceleration term v̇(t), for cell dynamics the ac-
tual cell mass is irrelevant and the prefactor of the ac-
celeration term has been absorbed into the terms on the
right side. The micro tracks are homogeneous and there-
fore the effective potential U [x] vanishes (note that mem-
ory extraction methods for general non-linear potentials
have recently been developed for the study of conforma-
tional transition kinetics [26]). The stochastic contribu-
tion FR(t) has zero mean 〈FR(t)〉 = 0 and is characterized
by its second moment

〈FR(t)FR(0)〉 = ΓR(t) . (2)

Since the distribution analysis of the experimental data
in Fig. 1(e) suggests purely Gaussian behavior, higher-
order noise correlations, which have been considered in
the past [9, 12, 13, 19, 20, 38], are neglected. We treat
the general case where the noise correlation ΓR(t) has a
finite range in time, which corresponds to colored noise.
For a moving cell that certainly is far from equilibrium,
the two functions Γv(t) and ΓR(t) are different in general.
The linear Langevin equation is characterized by the

VACF

Cvv(t) = 〈v(0)v(t)〉, (3)

from which positional correlation functions, the mean-
squared displacement as well as all higher moments can
be calculated. The Fourier-transformed VACF resulting
from the Langevin Eq. (1) reads

C̃vv(ω) =
Γ̃R(ω)

(iω + Γ̃v+(ω))(−iω + Γ̃v+(−ω))
, (4)

where Fourier transforms are given by f̃(ω) =
∫∞

−∞
dte−iωtf(t) and f̃+(ω) =

∫∞

0
dte−iωtf(t) denotes

the single-sided Fourier transform (the derivation is given
in Appendix C).
Our general non-Markovian model reduces to the PRW

model in the Markovian (i.e. white noise) limit, i.e. when

the Fourier-transformed memory function Γ̃v+(ω) and

the noise correlator Γ̃R(ω) are constant; in this case the
VACF Cvv(t) decays as a single exponential. The exper-
imental cell-averaged VACF in Fig. 2(a) (blue line) de-
cays exponentially over 500 minutes and is dominated by
noise for longer times, the inset demonstrates deviations
from single-exponential decay over the initial 20 minutes
by comparison with the straight broken black line in the
log-lin plot. This shows that the cells do not behave ac-
cording to the PRW model but that either finite memory
or colored noise is present in the data (we will later show
that deviations from PRW behavior are also present on
the single-cell level and therefore the deviations seen in
the cell-averaged VACF in Fig. 2(a) are not caused by
variations among different cells). As we will discuss in
more detail later on, the discontinuous behavior of the
VACF for the first two data points in the inset in Fig.
2(a) is explained by noise stemming from the localization
of the cell nucleus [17].
At this point a fundamental problem is encountered:

While the Fourier-transformed VACF C̃vv(ω) in Eq. (4)

is uniquely determined by the memory function Γ̃v+(ω)

and noise correlation Γ̃R(ω), we cannot uniquely extract

these two functions from C̃vv(ω). For a general Gaus-
sian process, the velocity Green’s function, from which
all correlation functions, conditional as well as uncondi-
tional averages can be derived, is uniquely defined by the
VACF, see Appendix D. This in turn implies that the
Fourier-transformed VACF C̃vv(ω) contains complete in-
formation on the cell migratory characteristics. Thus,
based on one-dimensional cell trajectories, the problem is
underdetermined. To proceed with our analysis, we for
the time being restrict the parameter space and collapse
the two functions Γv(t) and ΓR(t) into one (we will dis-
cuss how to undo this collapse later on). In analogy with
the equilibrium scenario, we define a substitute memory
function by

Γ(t) ≡ Γv(t) = ΓR(t)/B, (5)

where B will be later shown to correspond to the mean-
squared cell velocity. From Eq. (4) it follows that the
VACF predicted by the full model (i.e. when Γv(t) and
ΓR(t) are independent of each other) and by the substi-
tute model (when Eq. (5) holds) are the same, if the
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FIG. 1. Human breast cancer cell motion on circular micro lanes. (a) Five randomly selected cell trajectories, where x(t) is the
distance coordinate along the lane. Horizontal dashed lines denote the micro lane circumference of 320 µm. The inset depicts
a phase-contrast image of a migrating cell, the fluorescently labeled nucleus shows in blue [36]. (b) Time-dependent squared
velocity averaged over all cells, the horizontal black line indicates the time average. The first two hours that are colored in
red are excluded from all further analysis. The inset shows the length distribution of all 125 trajectories. (c) Instantaneous
velocity distribution of all cell trajectories. The black line shows a Gaussian determined by the mean and mean-squared cell
velocities. The inset shows mean velocities v̄i and velocity standard deviations σi of single-cells (black dots) as well as the
average over all cells (red circle). (d) Rescaled plot of the instantaneous velocity distributions of all cell trajectories, where the
velocity of each cell is shifted by its mean v̄i and rescaled by its standard deviation σi. The black line shows a Gaussian. (e)
Cell-averaged velocity distributions. Blue crosses show results plotted as a function of (vi − ¯̄v)/σ̄, i.e., where the cell velocities
are first averaged and then rescaled, where ¯̄v and σ̄ denote the mean velocity and the velocity standard deviation averaged over
all cells. When first rescaling and then averaging the data (red circles), i.e. when plotting the data as a function of (vi− v̄i)/σi,
the deviations from a Gaussian (black line) are significantly reduced.

condition

BΓ̃(ω)

|iω + Γ̃+(ω)|2
=

Γ̃R(ω)

(iω + Γ̃v+(ω))(−iω + Γ̃v+(−ω))
(6)

is satisfied, where the relation Γ̃(ω) = 2ℜΓ̃+(ω) holds.

Γ̃R(ω) follows from Eq. (6) as a unique function of

Γ̃v+(ω) and Γ̃+(ω), so we conclude that there are in-

finitely many combinations of Γ̃v+(ω) and Γ̃R(ω) that

for given Γ̃+(ω) satisfy Eq. (6).
In fact, the substitute kernel Γ(t) can be uniquely de-

termined from the experimental VACF. To see this, we
note that the GLE Eq. (1) can be rewritten as

Cvv(t)− Cvv(0) = −
∫ t

0

dsG(t− s)Cvv(s), (7)

where G(t) ≡
∫ t

0
Γ(t′)dt′ is the running integral over

the substitute memory function. Given an experimen-
tal VACF Cvv(t) as input, Eq. (7) can be inverted which
thereby uniquely determines G(t), [41, 42] from which
the memory function Γ(t) follows by differentiation. Nu-
merical details are explained in Appendix E.

The memory kernel Γ(t) extracted from the cell-
averaged VACF is shown in Fig. 2(b) (blue open circles),
while the green crosses denote the average over memory
kernels extracted from VACFs of individual cells. The
agreement between the two different kernel functions is
rather good, the inset demonstrates that the kernels de-
cay with similar characteristic timescales of 1.7 and 4.6
minutes, respectively, obtained from fitting single expo-
nential functions to the tails. Thus we conclude that
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FIG. 2. (a) Cell-averaged velocity autocorrelation function Cvv(t) (blue line) compared with the model prediction Eq. (16)
(red line). Thin grey lines denote data for the five individual cells shown in Fig. 1(a). The inset shows short-time results on the
full experimental time resolution of ∆ = 2.5 min, the broken black line denotes the PRW model prediction which is a straight
line in the log-lin plot. (b) Memory kernel Γ(t) (blue circles) directly extracted from the experimental cell-averaged Cvv(t) data
in (a). Thin grey lines denote results for the five individual cells shown in (a). The average of the kernels extracted from all
single-cell trajectories is denoted by green crosses. The inset shows −Γ(t) at short time on a log-lin scale together with single
exponential fits to the first four (eight) data points of the negative tails of the kernels, shown by solid (dashed) black lines.
(c) Mean-squared cell displacements averaged over all cells (blue data points) together with the analytical model result with
and without localization noise according to Eqs. (15) and (14), respectively. The vertical lines mark the ballistic time τb, the
memory time τm, and the persistent time τp. Thin grey lines denote experimental data for the five individual cells shown in
(a) and (b).

the functional form of the kernel is not influenced signif-
icantly by cell-to-cell variations of the VACF and thus
constitutes a robust feature of the cell dynamics. The
thin gray lines denote memory kernels for the five indi-
vidual cell trajectories shown in Fig. 1(a). On the exper-
imental time resolution, the kernel consists of a positive
contribution at time zero and a negative tail, which, as
shown in the inset, is a single exponential. The data thus
suggest a generic kernel

Γ(t) = 2aδ(t) + be−t/τm (8)

with b < 0. The standard PRW model is recovered in
the limit b = 0. The simple yet faithful model suggested
by the data thus contains a total of four parameters: a,
b, and τm as defined in Eq. (8), and B, as defined in Eq.
(5). The VACF for this model follows as

Cvv(t) =
Bτp(τm − τb)

τm(τp − τb)
e−t/τb +

Bτb(τp − τm)

τm(τp − τb)
e−t/τp ,

(9)
where the two relaxation times are defined by

τp,b =
1 + τma±

√

(1 + τma)2 − 4bτ2m − 4aτm
2(a+ τmb)

(10)

with τp the persistence time and τb < τp the ballistic
time. The mean-squared velocity is given by

Cvv(0) = B, (11)

which directly follows from Eq. (4) and (5) (see Appendix
C). The cell diffusion constantD is is given by an integral
over the VACF, which leads to

D =
C̃vv(0)

2
=

B

a+ bτm
. (12)

The two relations Eqs. (11) and (12) effectively reduce
the number of parameters from four to two, if experimen-
tal estimates for Cvv(0) and D are used.
Discretization effects and localization noise:

Since the extracted memory time τm is of the order of
the discretization time ∆ = 2.5 min, discretization ef-
fects, which invariably come in when positional data at
finite time differences are used to calculate velocities and
VACFs, are expected to perturb the memory extraction.
A second effect we have not discussed so far comes from
the localization noise which is produced when the flu-
orescence intensity profile from the labeled nucleus is
projected onto a single positional variable. In order
to account for discretization and localization noise ef-
fects, which are difficult to include in the memory extrac-
tion, we complement our data-based memory extraction
method by forward modeling of the experimental VACF.
For this we first define the mean-squared displacement

CMSD(t) =
〈

(x(t)− x(0))
2
〉

, (13)

which follows from the VACF by a double integration

according to CMSD(t) = 2
∫ t

0
dt′
∫ t′

0
dt′′Cvv(t

′′). From
Cvv(t) in Eq. (9) we obtain[28]

CMSD(t)/(2D) = (14)

t+
τb(τm − τb)

τp − τb

(

e−t/τb − 1
)

+
τp(τp − τm)

τp − τb

(

e−t/τp − 1
)

.

The localization noise of the cell nucleus position can be
modeled by adding a random variable xloc to the posi-
tion so that the model prediction for the experimentally
measured position reads xexp(i∆) = x(i∆) + xloc(i∆).
Assuming the localization noise to be uncorrelated over
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time and characterized by the deviation σloc, we obtain
for the MSD [17, 43]

Cexp
MSD(i∆) = CMSD(i∆) + 2(1− δi0)σ

2
loc . (15)

The VACF follows by the discrete second derivate ac-
cording to

Cexp
vv (i∆) = (16)

Cexp
MSD((i+ 1)∆)− 2Cexp

MSD(i∆) + Cexp
MSD((i− 1)∆)

2∆2

and includes both discretization and localization noise ef-
fects, see Appendix F. With the experimental values for
the mean-squared velocity Cexp

vv (0) = 0.22µm2/min2 and
the diffusion constant Dexp = 12.3µm2/min, calculated
via integrating the discrete experimental VACF in Fig.
2(a), there are, including the localization noise strength
σloc, 3 parameters. These are determined via a fit of
Eq. (16) to the experimental VACF in Fig. 2(a). The
fit is robust since the remaining fit parameters are de-
termined by distinct features of the VACF, namely the
non-monotonicity in the first three data points due to the
localization noise and the two decay times of the VACF
set by τb and τp, see Appendix G for details of the fit and
the evaluation of Dexp. The best fit is shown in Fig. 2(a)
by a red line and in the inset by red crosses, it describes
the experimental VACF perfectly on all time scales. We
note that the fit values for the memory parameters a, b
and τm differ from the values directly extracted from the
experimental data and shown in Fig. 2(b), which clearly
indicates the importance of discretization and localiza-
tion noise effects.
In Fig. 2(c) the experimental MSD data (blue circles)

is compared with the prediction from the fit to the cell-
averaged VACF including localization effects according
to Eq. (15) (solid red line), exhibiting perfect agreement.
We also show theory results for the case where we leave
all parameter fixed but set σloc = 0 (red broken line). By
comparison of the two predictions we see that localiza-
tion noise gives rise to a saturation of the MSD for short
times. Clearly, the deviation between these two scenar-
ios is only discernible in the first experimental MSD data
point. In contrast, for the VACF data in Fig. 2(a), lo-
calization noise has a more drastic effect and leads to
a characteristic non-monotonicity in the first three data
points. Localization noise thus has a more significant ef-
fect on VACF data compared to MSD data. The time
scales τb = 3min, τm = 6min and τp = 160min are indi-
cated by vertical colored lines.
Correlation analysis of single cell parameters:

One goal of single-cell motility analysis is the compari-
son and classification of individual cells. In Fig. 3(a)-(c)
we present the correlations between the single-cell results
for the diffusivity D, the squared cell velocity B and the
persistence time τp, as they follow from our fits to the
single-cell VACF data using the GLE defined by Eqs.
(1), (5), (8). These three observables can be straight-
forwardly extracted from experimental VACF by direct

fitting to the PRW model and similar correlation plots
have been presented in previous studies [17, 44]. The ad-
vantage of our indirect extraction via fit to the GLE is
that discretization and localization noise effects, which
strongly perturb B, are properly accounted for. A very
weak positive correlation between τp and B is seen in
Fig. 3(a), meaning that cells with a larger instantaneous
velocity also show a larger persistence time, in agreement
with previous results [44] (where however the persistence
time was defined differently). There is a pronounced lin-
ear correlation between τp and D over three orders of
magnitude in Fig. 3(b), which was also noted in litera-
ture before [17], while there is again only little correlation
between B and D in in Fig. 3(c). The main difference
between these observables is that B varies little from cell-
to-cell, spanning only a decade, while D and τp vary over
more than three orders of magnitude. The PRW model
predicts the diffusivity D to be given by D = Bτp [7],
which in Fig. 3(d) is shown to be obeyed by our data
very nicely over the entire range of individual cell data.
We conclude that the quasi-linear correlation between τp
and D in Fig. 3(b) is a consequence of the PRW scal-
ing D = Bτp in Fig. 3(d), produced by the fact that B
shows little cell-to-cell variation, and does not necessarily
present a distinct property of cell migratory behavior.

Deviations of our single-cell cell data from the PRW
model in the scaling plot Fig. 3(d) are rather mild. This
means that the PRW model is pretty accurate for the
long-time cell migration as described by diffusivity D,
persistence time τp and squared cell speed B. It is only
the short-time behavior of the VACF, shown in the inset
of Fig. 2(a), that reveals the deviations from the PRW
model. In Fig. 3(d) we observe that the single cell dif-
fusivity is systematically smaller than predicted by the
PRW model, which is due to the characteristic form of
the cell memory function, as will be explained below.

In Fig. 3(e) we show a correlation plot of the memory
time τm versus the amplitude |b| of the exponential term
in the memory function defined in Eq. (8). We observe
a large spread of the memory time over three orders of
magnitude, from fractions of a minute to few hours, and
at the same time a pronounced anti-correlation between
τm and |b|: cells that are characterized by long memory
times τm show small amplitudes |b|. This anti-correlation
suggests the correlation plot of the product |b|τm versus
the amplitude a of the delta function in the memory func-
tion defined in Eq. (8), shown in Fig. 3(f). The almost
perfect linear scaling a = |b|τm, denoted by the straight
line, mathematically implies that the memory function
of cells is tuned such that the two relaxation times τb
and τp, defined in Eq. (10), are maximally different from
each other. The other parameters of our non-Markovian
cell model, a, b, B, τm exhibit rather weak correlations,
as shown in Appendix H.

In conclusion, single-cell memory parameters allow to
compare single cells in an unbiased fashion. The spread
of the parameters in Fig. 3 is rather large; it is at the
present stage not clear whether the pronounced scatter-
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FIG. 3. Correlation analysis of single-cell parameters obtained from fits of Eq. (16) to single-cell VACFs. Cell data for which
b is positive are shown as green circles, blue circles denote cells for which D according to Eq. (12) is negative, black circles
denote the majority of cells for which b is negative and D positive. Red open circles denote the result from the analysis of the
cell-averaged VACF. (a)-(c) Correlations between the diffusivity D, squared cell velocity B and persistence time τp. Comparison
with the solid line in (b) indicates weak linear scaling. (d) Scaling plot of Bτp versus D, the PRW prediction D = Bτp is
denoted by a solid line and constitutes an upper bound to the single-cell diffusivity. (e) The plot of the memory time τm versus
the amplitude of the exponential memory contribution |b| reveals a roughly inverse linear scaling (denoted by a solid line),
which suggests that the integrated contribution of the exponential memory term to the friction, |b|τm, is rather constant. (f)
Scaling plot of |b|τm versus a, demonstrating that the two contributions to the memory function defined in Eq. (8) have equal
integrated weight.

ing stems from cell heterogeneity or from the shortness
of the trajectories. However, it is clearly seen that the
data do not fall into distinct clusters. The single-cell
parameters are centered around the parameters fitted to
the cell-averaged VACF (red circles). This corroborates
that the memory function model we extract is not mod-
ified by the cell-to-cell variation in a significant fashion,
in line with the good comparison of the memory function
extracted from the cell-averaged VACF and the average
over the memory functions extracted from single-cell data
in Fig. 2(b).

Time-scale analysis of MSD: The model with a
negative exponential kernel contribution, Eq. (8), can be
analyzed in closed and exhibits a characteristic persis-
tence enhancement. In fact, in the limit τb < τm < τp

the model exhibits four different regimes [45]

CMSD(t) ∼



















t2, t ≪ τb
t, τb ≪ t ≪ τm
t2, τm ≪ t ≪ τp
t, τp ≪ t.

(17)

So there is a short-time regime t ≪ τb where motion
is ballistic, an intermediate regime for τb ≪ t ≪ τm
where motion is diffusive, a second intermediate regime
for τm ≪ t ≪ τp where memory effects induce persistent
motion and finally the asymptotic diffusive regime for
τp ≪ t. This multi-scale migration behavior is illustrated
in Fig. 4, which shows the transient MSD exponent

α(t) =
d lnCMSD(t)

d ln t
. (18)

For B, a and b we use the values resulting from the fit
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FIG. 4. Phase diagram for the MSD exponent α (denoted by
the green-yellow color scale) as a function of time t and the
memory time τm. The memory time from the fit to the cell-
averaged VACF in Fig. 2 (a) is shown as a horizontal dashed
line. For long memory times τm, an intermediate diffusive
regime (α ≈ 1, shown in yellow) appears between the short-
time ballistic (left green region) and the long-time persistent
regimes (right green region) where α ≈ 2.

to the cell-averaged VACF in Fig. 2(a) and present α
as a function of time t and a variable memory time τm.
The best-fit value τm = 6 min is indicated by a hori-
zontal black broken line. As τm increases, an intermedi-
ate diffusive regime (yellow region) at intermediate times
develops and a second persistent regime (green strip to
the right) at long times appears. This persistent regime
appears at times that are substantially longer than the
memory time, so we conclude that memory induces per-
sistent motion at longer times than the memory time
itself. For the actual memory time extracted from the
averaged cell data, τm = 6min, the short-time ballistic
and the long-time persistent regimes merge, but from the
scaling diagram it transpires that a small increase of the
memory time induces an intermediate diffusive regime
and extended persistent motion over much longer time
scales. The cancer cells we study are therefore close to
a transition to the full four-scale dynamic behavior as
described by Eq. (17). The presence of the intermedi-
ate diffusive regime in the time range for τb ≪ t ≪ τm
also explains why for the cell data in Fig. 3(d) the PRW
model constitutes an upper bound for the cell diffusivity:
This is so because the intermediate diffusive behavior in
Eq. (17) lowers the MSD compared to a purely ballistic
motion.

Reconstruction of equivalent Markovian mod-

els: Our cell motility analysis utilizes the GLE with a
single substitute memory function Γ(t), defined in Eq.
(5), which by extraction from experimental data is shown
to exhibit an exponentially decaying negative contribu-

tion according to Eq. (8). There are infinitely many
different non-Markovian non-equilibrium models, charac-
terized by two different functions Γv(t) and ΓR(t), that
according to Eq. (6) produce the same VACF.
Non-Markovian effects arise from Markovian man-

body systems by integrating out degrees of freedom [23],
conversely, for any non-Markovian GLE a Markovian
higher-dimensional substitute model can be constructed.
In Appendix I we demonstrate that the GLE with a sin-
gle substitute memory function Γ(t) given by Eq. (8)
corresponds to an equilibrium Markovian system of two
degrees of freedom with non-diagonal friction coupling.
This of course does not imply that cell migration is an
equilibrium process, dissipative effects would in such a
model be expected to show up on a hidden more mi-
croscopic level. As explained in Appendix J, it is also
possible to construct different equivalent two-dimensional
non-equilibrium Markovian models. One particularly
simple example of a non-equilibrium model that repro-
duces the experimental VACF and at the same time al-
lows to be written in terms of a coupled, stable system
of Markovian rate equations, is given by

Γv(t) = 2avδ(t), ΓR(t) = 2a2Rδ(t) +
b2R
τR

e−t/τR , (19)

which corresponds to a Langevin equation with an in-
stantaneous friction function Γv(t) and a colored noise
correlator ΓR(t). The coefficients av, aR, bR, τR fol-
low from Eq. (6) as τR = τp, av = 1/τb, a2R = Ba,
b2R = B(τp/τb− τma)/τm, see Appendix J for details. In-
terestingly, the persistence time τp, which is the longest
timescale in the system, equals the correlation time τR of
the active noise in Eq. (19). The non-equilibrium non-
Markovian Langevin defined by Eq. (19) can be derived
from the two coupled Markovian equations of motion

η̇(t) = −τ−1
R η(t) + τ−1

R ξ1(t) (20a)

v̇(t) = −avv(t) + aRξ0(t) + bRη(t), (20b)

where η(t) is an additional fluctuating degree of freedom.
The two white Gaussian noise variables ξi(t) with i = 0, 1
are defined by correlators 〈ξi(t)ξj(t′)〉 = 2δijδ(t−t′). The
effective random force entering the GLE Eq. (1) for the
single variable v(t) is given by FR(t) = aRξ0(t) + bRη(t)
and reproduces the random correlation ΓR(t) given in
Eq. (19), as is shown in Appendix J. This model has
been studied amply in literature and corresponds to the
underdamped version of the active Ornstein-Uhlenbeck
process [46]. In fact, a collection of particles described by
the correlators in Eq. (19) undergoes a motility-induced
phase separation for a suitable choice of parameter values
[47, 48]. We have thus demonstrated that the motion of
the cancer cells studied by us can be mapped onto a non-
equilibrium particle model that is well-known in litera-
ture. We hasten to add that this mapping is not unique
and that there are other equilibrium and non-equilibrium
Markovian models on which we can map our extracted
substitute kernel Γ(t), in Appendices I and J we show
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alternative equilibrium and non-equilibrium Markovian
models that have similar complexity as the model defined
in Eq. (19).

III. CONCLUSIONS

The goal of single-cell motility modeling is to ex-
tract parameters from single-cell trajectories that allow
to characterize, compare, classify and, to a certain de-
gree, understand cell migration. In traditional modeling
approaches, this goal is achieved by defining a migratory
model and by extracting parameters of that model by fit-
ting to experimental data. While such approaches have
produced remarkable insights into the dynamics of cells
[17, 44], the large number of different random walk mod-
els renders the extracted parameters not unique. This
is enhanced by the fact that single-cell data show large
cell-to-cell variation and pronounced single-cell noise due
to the typically short trajectory length.
We here introduce an alternative modeling approach,

which is based on the generalized Langevin equation that
includes an arbitrary memory friction function Γv(t) and
an arbitrary colored noise correlator ΓR(t). By construc-
tion, our cell motion model contains many previously in-
troduced random walk models; as the main advantage
of our approach, we extract the memory function in a
data-driven approach from the trajectory time series. We
do not impose a certain model on the cell data, but we
rather let the cell migration data reveal to us the model
that best describes the trajectories.
In the first part we extract a substitute memory func-

tion Γ(t) directly from the cell VACF. The memory func-
tion contains an exponentially decaying negative friction
contribution, which demonstrates that the cell dynamics
shows small but significant deviations from the standard
PRW model, according to which the memory function
would simply be a delta function. The presence of a neg-
ative exponentially decaying friction contribution is in-
teresting, because the migratory dynamics produced by
such a model is equivalent to the underdamped version
of the active Ornstein-Uhlenbeck process, as we show in
Appendix J. This is remarkable, since the fact that can-
cer cell motion is equivalent to this active particle model
is data-driven and follows directly from the cell trajecto-
ries.
Based on the trajectories alone, it is not possible to

uniquely extract the memory friction function Γv(t) and
the noise correlator ΓR(t); this is not a short-coming of
our model or the methods we use, but rather follows from
the limited amount of information contained in unbiased
one-dimensional trajectories. In future studies, it would
be interesting to subject cells to external perturbations
(such as chemical gradients or confining forces), which
would allow to determine response functions and thereby
to extract Γv(t) and ΓR(t) separately. This would help
to characterize the non-equilibrium character of biologi-
cal systems in more detail. In such studies presumably

non-Gaussian velocity distributions will be encountered,
which can be dealt with by the non-linear kernel extrac-
tion methods that we developed earlier [25, 26]. Alterna-
tively, multidimensional cell marker data directly signal
detailed balance violation and thereby allow to detect
the non-equilibrium character of the system dynamics
[49]. In fact, multidimensional data can be analyzed by
straightforward adaption of the methods presented in this
paper.

Clearly, it would be desirable to relate the character-
istics of the memory function we extract from cell tra-
jectories to biochemical processes in the cell. Numerous
experimental and theoretical studies considered cell pro-
trusion and cell polarization dynamics and in particular
investigated the connection to the underlying dynamics
of the extracellular matrix, the actin network, the cel-
lular polarity machinery and integrin trafficking [50–52].
Interestingly, we find the negative friction component of
the memory kernel to decay over a few minutes, which
is similar to the time scale observed for the cell protru-
sion kinetics [51], which could indicate a possible connec-
tion. However, we note that the memory time distribu-
tion of individual cells in Fig. 3(e) is extremely broad
and shows memory times τm from less than a minute to
hours, which does not seem to be mirrored by an equally
broad distribution of cell protrusion time scales. Indeed,
the connection between times scales of the dynamics of
cell components (such as the actin network or cell protru-
sions) and the memory time scale that characterizes the
overall cell motion is presumably rather complex: This
is demonstrated by the simple Markovian models derived
in Appendix J, where the memory time scale τm depends
not only on the separate time scales of the coupled co-
ordinates but also on the coupling strength between the
coordinates in a complex manner. In fact, the connec-
tion of the memory function time scales to underlying cell
component dynamics could be addressed experimentally
by studying the effect of chemical agents that interfere
with e.g. the cytoskeleton on the memory function or,
even more directly, by using multiple cell markers that
couple to different parts of the cell migratory machinery.
In this context, experimental data with finer time dis-
cretization, for which alternative staining methods need
to be employed, would allow to better resolve the short-
time behavior of the extracted memory kernel functions.

Future experiments with different cell lines will demon-
strate the potential of our memory kernel extraction tech-
nique for cell comparison and classification. Our methods
can be applied to all different kinds of living and synthetic
active objects, comparison of the extracted memory func-
tions will reveal whether the negative friction component
of the memory function found in the present study is a
general hallmark of active systems.
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Appendix A: Experiments

Micro-contact printing: Polydimethylsiloxane
(PDMS) stamps were treated with UV light (PSD-UV,
Novascan) for 5 min and incubated for 45 min in a
50µg/ml fibronectin solution (Yo proteins). Next, stamps
were washed with deionized water, dried and placed on
a plastic dish (µ-Dish, Ibidi), which had been treated
with UV light for 15 min. A droplet of a 1 mg/ml poly-
L-lysine-grafted polyethylene glycol (PLL-PEG) (SuSoS)
solution (dissolved in 10 mM HEPES containing 150 mM
NaCl) was placed at the edge of the stamps and drawn
into the spaces between surface and stamp by capillary
action. Stamps were removed and a glass coverslip was
placed on the dish surface to ensure complete coverage
of the surface with PEG solution. After a 30-min incu-
bation, the coverslip was removed and the surface was
washed three times with PBS and stored in PBS until
cells were seeded.
Cell cultures: MDA-MB-436 breast cancer cells were
cultured in DMEM-F12 medium (c.c.pro) containing 10%
fetal bovine serum (Invitrogen) and 2.5 mM L-glutamine
(c.c.pro) at 37◦C in a 5% CO2 atmosphere. For exper-
iments about 10,000 cells were seeded per dish and the
medium was exchanged after 2 h to L15 medium without
phenol red with 25 nM Hoechst added.
Time-lapse microscopy: Cells were monitored using
an inverted microscope equipped with an 10x objective
(Nikon TI), an automated stage (Märzhäuser), a sCMOS
camera (PCO), and a heating chamber to keep cells at
37◦C (Okolab). Every 2.5 min phase-contrast and fluo-
rescence images of the nuclei were acquired.
Cell tracking: Single cells on the microlanes where
manually identified. A band pass filter was applied to
the fluorescence images of the nucleus. Then, a binary
image was generated using a threshold. The geometric
center of the nucleus was used as the cell position. Cell
tracking was terminated in the case of cell division, cell
death or when cells spanned over the middle part of the
ring or migrated out of the microlane. The center of the
ring-shaped microlane was determined by fitting a circle
to the cell positions to allow a transformation to polar
coordinates.

Appendix B: Stationarity

To check whether the data are consistent with the as-
sumption of stationarity, we estimate the second moment

of the velocities by averaging over all cells

v2(t) =
1

n(t)

∑

i

Θ(Ti − t)v2i (t), (B1)

where n(t) denotes the number of cell trajectories which
are at least of length t and Ti denotes the total length
of trajectory i. In the above expression, the individual
trajectories all start at time t = 0. Since not all trajec-
tories are of the same length, the average is taken only
over a fraction of the total number of cells for large t in
the above estimate. To investigate the behavior near the
end of all trajectories, we also estimate the second mo-
ment with the trajectories shifted such that they all end
at t = 0,

v2(t− T ) =
1

n(T − t)

∑

i

Θ(Ti − T + t)v2i (T − t). (B2)

The estimate v2(t) shows a peak during the first two
hours and is rather constant after that, see Fig. 5. This
peak is smeared out in the the shifted estimate v2(t− T ),
which otherwise is rather constant and does not show
any anomaly towards the trajectory end. Non-stationary
behavior is thus only discernible in the first two hours
of the trajectories, which are therefore discarded for all
further analysis, as noted in the main text.

Appendix C: Velocity autocorrelation

To derive the general formula Eq. (4) for the VACF in
the frequency domain, we first note that

〈

F̃R(ω)F̃R(ω
′)
〉

= 2πδ(ω + ω′)ΓR(ω), (C1)

which follows from Eq. (2). The VACF can thus be
written as

Cvv(t) = 〈v(t)v(0)〉 (C2)

=

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
eiωt

〈

F̃R(ω)F̃R(ω
′)
〉

(Γ̃v+(ω) + iω)(Γ̃v+(ω′) + iω′)

=

∫ ∞

−∞

dω

2π
eiωt Γ̃R(ω)

(Γ̃v+(ω) + iω)(Γ̃v+(−ω)− iω)
,

which is just the inverse Fourier transform of Eq. (4).
The VACF for a general substitute model reads in the

frequency domain

C̃vv(ω) =
BΓ̃(ω)

(

Γ̃+(ω) + iω
)(

Γ̃+(−ω)− iω
) (C3)

=
BΓ̃(ω)

∣

∣

∣
Γ̃+(ω) + iω

∣

∣

∣

2 ,
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FIG. 5. Squared velocity averaged over all cells as a function
of time. The horizontal black line indicates the average over
all cells and over time.

see Eq. (6) in the main text. Introducing the velocity re-

sponse χ̃(ω) =
(

iω + Γ̃+(ω)
)−1

, Eq. (C3) can be written
as

C̃vv(ω) = BΓ(ω)χ̃(ω)χ̃(−ω) = Bχ̃(ω) +Bχ̃(−ω), (C4)

where we used Γ̃(ω) = Γ̃+(ω) + Γ̃+(−ω). It follows that

Cvv(0) =

∫ ∞

−∞

dω

2π
C̃vv(ω) = (C5)

B

∫ ∞

−∞

dω

2π
(χ̃(ω) + χ̃(−ω)) = B

∫ ∞

−∞

dω

π
χ̃(ω).

Since the response function χ̃(ω) is causal, it has no poles
in the lower half complex plane. Closing the contour in
the lower half plane leads to

Cvv(0) =
B

π

∫ ∞

−∞

dωχ̃(ω) = −B

π

∫

arc

dωχ̃(ω) (C6)

= −B

π
lim

R→∞

∫ −π

0

dϕ
iReiϕ

iReiϕ + Γ̃+(Reiϕ)

= −B

π

∫ −π

0

dϕ = B,

where we assumed that |Γ̃+(z)| < ∞ for all z ∈ C.

Appendix D: Velocity Green’s function

Since we model the cell velocity v(t) as a stationary
Gaussian process, the corresponding joint probability dis-
tribution i.e. the non-normalized Green’s function, is
given by a bivariate normal distribution

p(v2, t2; v1, t1) =
exp

(

−~vTΣ−1~v/2
)

2π
√

|Σ|
. (D1)

Here, ~vT = (v1, v2) and the covariance matrix is given by

Σ =

(

〈v(t1)v(t1)〉 〈v(t1)v(t2)〉
〈v(t1)v(t2)〉 〈v(t2)v(t2)〉

)

(D2)

=

(

Cvv(0) Cvv(t2 − t1)
Cvv(t2 − t1) Cvv(0)

)

. (D3)

Since the velocity is normally distributed, p(v) =

exp(−v2/2Cvv(0))/
√

2πCvv(0), the normalized Green’s
function, which is the distribution of v(t2) = v2 condi-
tional on v(t1) = v1 is given by

p(v2, t2|v1, t1) =
p(v2, t2; v1, t1)

p(v1, t1)
(D4)

=
exp

(

− (v2−v1Cvv(t2−t1)/Cvv(0))
2

2Cvv(0)(1−Cvv(t2−t1)2/Cvv(0)2)

)

√

2πCvv(0) (1− Cvv(t1 − t2)2/Cvv(0)2)
,

(D5)

from which the conditional expectation value of the ve-
locity can be read off as

〈v(t2)〉 |v(t1)=v1
=

Cvv(t2 − t1)

Cvv(0)
v1. (D6)

Note that the Green’s function can be entirely expressed
in terms of the VACF.

Appendix E: Iterative solution of the memory

equation

To extract the memory kernel from a discrete VACF,
an appropriate discretization scheme for Eq. (7) needs
to be chosen first. Note that since the memory kernel
Γ(t) is a symmetric function, its running integral G(t) =
∫ t

0
dt′Γ(t′) is necessarily antisymmetric. We approximate

the integral in Eq. (7) via the trapezoidal rule:

Cexp
vv (n∆)− Cexp

vv (0) = (E1)

−∆

2

n−1
∑

i=0

G((n− i− 1/2)∆)(Cexp
vv ((i+ 1)∆) + Cexp

vv (i∆))

⇒ ∆G((n+ 1/2)∆) =

−2
Cexp

vv ((n+ 1)∆)− Cexp
vv (0)

Cexp
vv (∆) + Cexp

vv (0)

−
n
∑

i=1

∆G((n− i+ 1/2)∆)
Cexp

vv ((i+ 1)∆) + Cexp
vv (i∆)

Cexp
vv (0) + Cexp

vv (∆)
,
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where the sample points G((n+1/2)∆) are located in be-
tween the sample points of the discrete VACF Cexp

vv (n∆).
The discrete memory kernel Γ(i∆) is then obtained via
the central difference according to

Γ(i∆) =
G((i+ 1/2)∆)−G((i− 1/2)∆)

∆
, (E2)

⇒ Γ(0) =
2G(∆/2)

∆
.

The expression for Γ(0) follows using the anti-symmetry
of G((i+ 1/2)∆).

Appendix F: Discrete velocity autocorrelation

function

For a given finite time resolution ∆, the autocorrela-
tion Cexp

vv (j∆) of the discrete velocity v(j∆) = (x(j∆+
∆/2)−x(j∆−∆/2))/∆ can be obtained from the contin-
uous MSD by taking the second central difference. To see
this, we first note that from the definition of the discrete
velocity, it follows that

x(j∆+∆/2) = x(∆/2) + ∆

j
∑

k=1

v(j∆) . (F1)

The MSD for lag time j∆ can thus be written as

Cexp
MSD(j∆) =

〈

(x(j∆+∆/2)− x(∆/2))2
〉

(F2)

=

〈(

x(∆/2) + ∆

j
∑

k=1

v(k∆)− x(∆/2)

)2〉

= ∆2

j
∑

l,k=1

〈v(l∆)v(k∆)〉

= j∆2〈v(0)2〉+ 2∆2

j
∑

l=1

l−1
∑

k=1

〈v((l − k)∆)v(0)〉.

In the continuous case, the MSD and the VACF are re-

lated via 1
2

d2

dt2CMSD(t) = Cvv(t), which carries over to
the discrete case if one replaces the second derivative by
the second central finite difference:

Cexp
MSD((j + 1)∆)− 2Cexp

MSD(j∆) + Cexp
MSD((j − 1)∆)

2∆2

(F3)

=

j−1
∑

k=0

〈v((j − k)∆)v(0)〉 −
j−2
∑

k=0

〈v((i− k − 1)∆)v(0)〉

= 〈v(j∆)v(0)〉 = Cexp
vv (j∆).

An important special case is 〈v(0)2〉 = Cexp
vv (0). Since

the MSD is a symmetric function and zero at the origin,
we have

Cexp
vv (0) =

Cexp
MSD(∆)

∆2
. (F4)

As mentioned in the main text, the VACF of the experi-
mental data was estimated by computing the autocorre-
lation function of the position increments v(j∆) rather
than by computing the finite difference of the MSD, since
the former method produces a less noisy VACF. Averages
of the experimental VACF and MSD data over different
cells are weighted with the individual trajectory lengths.
Using Eq. (F3), the effect of localization noise with a
deviation σloc on the discrete VACF can be derived as

Cexp
vv (0) =

Cexp
MSD(∆)

∆2
=

CMSD(∆) + 2σ2
loc

∆2
(F5)

= Ĉexp
vv (0) + 2

σ2
loc

∆2
(F6)

Cexp
vv (∆) =

Cexp
MSD(2∆)− 2Cexp

MSD(∆)

2∆2

=
CMSD(2∆) + 2σ2

loc − 2CMSD(∆)− 4σ2
loc

2∆2

= Ĉexp
vv (∆)− σ2

loc

∆2

Cexp
vv (j∆) = Ĉexp

vv (j∆), j > 1

where Ĉexp
vv (j∆) denotes the discrete VACF in the ab-

sence of localization noise. As can be seen, the local-
ization noise only affects the first two data points of the
discrete VACF regardless of the sampling time ∆ [17, 43].

Appendix G: Details of the fitting procedure

Starting from a continuous model for the MSD (or
equivalently the VACF) without localization noise, dis-
cretization effects as well as localization noise effects are
accounted for in Eq. (16). The fits of Eq. (16) to experi-
mental data are performed using MATLAB 2016b (Math-
works). We employ a built in implementation of the trust
region method to perform the non-linear least-square fit
of Eq. (16) to the first 500 minutes of the cell-averaged
VACF. The root mean-square deviation (RMSD) defined
by

r2 =
1

jmax

jmax−1
∑

j=0

(

Cexp
vv (j∆)− Cfit

vv(j∆)
)2

(G1)

between the model prediction Cexp
vv and the experimental

data Cdata
vv is r ≈ 0.0015. We obtain the following values

for the fit parameters:

a = 0.15 min−1, (G2)

b = −0.023 min−2,

τm = 6.02 min,

B = 0.14 µm2 min−2,

σloc = 0.53 µm.

These values give the timescales τb = 3.23 min and
τp = 164 min. The corresponding estimate for the diffu-

sion constant Eq. (12) is given by D = 12.7 µm2 min−1
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and only slightly deviates from Dexp = 12.3 µm2 min−1

obtained via integrating the first 500 minutes of the ex-
perimental VACF.
For the single cell VACFs, Eq. (16) is fitted to the

experimental data from t = 0 to half the temporal length
of the trajectory. The fits are performed for four different
starting values

#1 #2 #3 #4

a * * * *

b * * 0 0

τm * * * *

B * * * *

σloc * 0 * 0

where “*” denotes the corresponding parameter values
obtained from the fit to the cell-averaged VACF. For the
fitting procedure, we restrict the parameter values to lie
within the bounds

0 <a < 10 min−1,

−10 <b < 10 min−2,

0.01 <τm < 105 min,

0.01 <B < 103 µm2 min−2,

0 <σloc < 10 µm.

The average RMSD of the best single-cell fits is r ≈ 0.022.
For the diffusion constant we obtain Dexp =

12.3 µm2 min−1 via integrating the first 500 minutes
of the experimental cell-averaged VACF with the trape-
zoidal rule according to

Dexp =
∆

2
Cexp

vv (0)+∆

jmax−1
∑

j=1

Cexp
vv (j∆)+

∆

2
Cexp

vv (jmax∆).

(G3)
Note, that Dexp is independent of the localization uncer-
tainty σloc (c.f. sect. F). To estimate the uncertainty
of Dexp, we first need an estimate of the uncertainty of
the VACF. Estimating the uncertainty of an autocorrela-
tion function via the standard error underestimates the
true uncertainty since the data are correlated. Instead,
we exploit the fact that we are averaging over many dif-
ferent cells and estimate the error from the scattering
of the single cell VACFs around the cell-averaged VACF
by calculating the root-mean-square deviation (RMSD)
acording to

RMSD(j∆) =

√

1

n(j∆)

∑

i

(

Cexp
vv (j∆)− CSC,i

vv (j∆)
)2

.

(G4)
Here, CSC,i

vv denotes the experimental VACF of the i-th
single cell, n(j∆) denotes the number of trajectories of at
least length j∆ and the sum is taken over all trajectories
which are at least of length n(j∆). Figure 6 (a) shows
the cell-averaged VACF together with error bars denot-
ing the RMSD. The resulting running integral (i.e. the

0 500 1000 1500 2000
0

5

10

15

20

25

0 500 1000 1500 2000
-0.05

0

0.05

0.1

0.15

0.2

0.25

a

b

FIG. 6. (a) Cell-averaged VACF (solid red line). The error
bars denote the root-mean-square deviation as obtained by
comparing the cell-averaged VACF with the single cell VACFs
(see text). (b) Running integral (solid red line) over the cell-
averaged VACF, used to estimate the diffusion constant Dexp.
Error bars (in blue) are obtained by taking the running inte-
gral of the RMSD of the VACF.

estimate of Dexp) is shown in Fig. 6 (b), where the er-
ror bars denote the estimate of the maximal uncertainty
that follows from integrating the RMSD, Eq. (G4), of
the VACF. The vertical black dashed line indicates the
upper integration limit tend = 500 minutes, which is the
value we used in our analysis. This choice for the upper
integration limit is rationalized by the observation that
beyond 500 minutes the noise of the the cell averaged
VACF by far exceeds the value of the VACF itself, as
shown in Fig. 6 (a).

Appendix H: Correlation analysis of single-cell

parameters

Here, we provide the full correlation analysis between
the kernel parameters a, b, τm, B and the integrated ex-
ponential tail bτm, extracted from single-cell trajectories,
see Fig. 7. Aside from the (inverse) correlations between
b and τm and between a and bτm discussed in the main
text, no further correlations are discernible. Notably, the
kernel amplitudes a and b are rather uncorrelated, see
Fig. 7(c).
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FIG. 7. Correlation analysis of single-cell kernel parameters a, b, τm, B obtained from fits of Eq. (16) to single-cell VACFs. Cell
data for which b is positive are shown as green circles, blue circles denote cells for which D according to Eq. (12) is negative,
black circles denote the majority of cells for which b is negative and D positive. Red open circles denote the result from the
analysis of the cell-averaged VACF (cf. Fig. 3 in the main text). The straight, solid black lines in (e) and (h) denote (inverse)
linear scaling.

Figure 8 shows the correlation analysis for the equiv-
alent set of parameters D,B, τb, τp which correspond to
distinct features in the MSD and the VACF. Aside from
the correlation between τp and D discussed in the main
text, no other correlations are discernible.

In all cases, the data do not fall into distinct clusters
and the single-cell parameters scatter around the values
extracted from the cell-averaged VACF, which are de-
noted by red circles.

Appendix I: Equilibrium Markovian model

We discuss how a memory kernel with a negative ex-
ponential tail arises from a Markovian system of coupled
particles, which satisfies the FDT and thus is in equi-

librium. We consider a system of two particles, whose
velocities are coupled by a generalized friction matrix,

v̇1(t) = −γ1v1(t)− γ12v2(t) + φ1ξ1(t) + φ12ξ2(t), (I1a)

v̇2(t) = −γ2v2(t)− γ12v1(t) + φ2ξ2(t) + φ12ξ1(t). (I1b)

Here, ξi(t) are two indipendent realizations of white,
Gaussian noise, i.e. 〈ξi(t)ξj(t′)〉 = 2δijδ(t− t′). The goal
is to construct an effective, non-Markovian dynamics for
the first particle by integrating out the contribution of
the second particle. We obtain

v2(t) =

∫ t

−∞

dt′e−(t−t′)γ2 [−γ12v1(t
′) + φ2ξ2(t

′) + φ12ξ1(t
′)] .

(I2)
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FIG. 8. Correlation analysis of the parameter set D,B, τb, τp. The color code for the data points is the same as in Fig. 7. The
solid black line in (b) illustrates the linear scaling between the diffusion constant D and the persistence time τp. Aside from
that, no other correlations are discernible.

Inserting this solution into the equation of motion of the
first particle, we obtain

v̇1(t) = −
∫ t

−∞

dt′Γ(t− t′)v1(t
′) + FR(t), (I3)

with a memory kernel

Γ(t) = 2γ1δ(t)− γ2
12e

−|t|γ2 . (I4)

It can be seen, that the coupling between velocities, me-
diated by the friction coupling coefficient γ12, leads to
a negative exponential tail in the memory kernel. The
effective random force acting on the first particle is given
by

FR(t) = φ1ξ1(t) + φ12ξ2(t) (I5)

−
∫ t

−∞

dt′e−(t−t′)γ2 [γ12φ2ξ2(t
′) + γ12φ21ξ1(t

′)] .

Thus we obtain the following expression for the autocor-
relation function of the random force

〈FR(t)FR(0)〉 = ΓR(t) = 2(φ2
1 + φ2

12)δ(t) (I6)

− [2γ12(φ2φ12 + φ1φ21)− γ2
12(φ

2
2 + φ2

21)/γ2]e
−|t|γ2 .

The FDT, i.e. the relation ΓR(t) = BΓ(t), holds if the
following conditions are satisfied

Bγ1 = φ2
1 + φ2

12 (I7)

Bγ2 = φ2
2 + φ2

12

Bγ12 = φ12(φ1 + φ2).

The connection to the kernel of the substitute model Eq.
(8) in the main text is established by comparison with
Eq. (I4). This leads to the following mapping

a = γ1 (I8)

b = −γ2
12

τm = γ−1
2

Appendix J: Non-equilibrium Markovian models

The closed form expression for the VACF of the sub-
stitute model Eq. (8) reads

C̃vv(ω) = 2B
aτ2mω

2 + a+ bτm
ω4τ2m + ω2(1− 2τ2mb+ a2τ2m) + (a+ bτm)2

.

(J1)
This expression has poles at ω = ±i/τp and ω = ±i/τb,
which are given explicitly in Eq. (10) in the main text.
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Our goal is to find a non-equilibrium model that repro-
duces the above VACF. First we note that

D =
C̃vv(0)

2
=

B

a+ τmb
, (J2a)

1

2
lim

ω→∞
ω2C̃vv(ω) = Ba. (J2b)

As a starting point, we consider the following non-
equilibrium model

Γv(t) = 2avδ(t)+
bv
τv

e−t/τv , ΓR(t) = 2a2Rδ(t)+
b2R
τR

e−t/τR ,

(J3)
whose associated VACF is given by

C̃vv(ω) =
2(1 + ω2τ2v )(a

2
R + b2R + a2Rτ

2
Rω

2)

(1 + ω2τ2R)(ω
2τv − iω(1 + avτv)− av − bv)(ω2τv + iω(1 + avτv)− av − bv)

. (J4)

By comparing Eqs. (J1) and (J4) we note that the powers
of ω in the numerators and denominators do not match
in general. There are two special cases of the model Eq.
(J3) which reproduce the correct functional form of Eq.
(J1), these are obtained by setting either bv or bR to zero.
We in the following consider these two cases separately.

Model I with bv = 0

In this case the expression Eq. (J4) reduces to

C̃vv(ω) =
2(a2R + b2R + a2Rτ

2
Rω

2)

(1 + ω2τ2R)(−iω − av)(iω − av)
. (J5)

Comparing with Eq. (J2), we obtain the following rela-
tions

a2R + b2R
a2v

=
B

a+ τmb
, (J6a)

a2R = Ba. (J6b)

The VACF (J5) has poles ω = ±iav and ω = ±i/τR,
which must coincide with the poles at ω = ±i/τp and
ω = ±i/τb. With the choice av = 1/τb and τR = τp we
obtain the mapping

av =
1

τb
, (J7)

τR = τp,

a2R = Ba

b2R =

(

τp
τbτm

− a

)

B,

as described in the main text, where we have used the
relation τpτb/τm = 1/(a+ bτm).
The dynamics of this model can be described by two

coupled Markovian equations of motion

η̇(t) = −τ−1
R η(t) + τ−1

R ξ1(t) (J8a)

v̇(t) = −avv(t) + aRξ0(t) + bRη(t), (J8b)

where η(t) is a hidden fluctuating degree of freedom. In
the equations two white Gaussian noise variables ξi(t)
appear with correlators 〈ξi(t)ξj(t′)〉 = 2δijδ(t− t′). With
the alternative choice av = 1/τp and τR = τb instead, we

obtain b2R < 0 and thus an imaginary coupling constant
in Eq. (J8), which is unphysical and therefore discarded.
The effective random force FR(t) = aRξ0(t) + bRη(t)

reproduces the desired correlation

〈FR(t)FR(0)〉 = 2a2Rδ(t) + b2Re
−t/τR/τR . (J9)

To see this, we first note that the solution for η(t) is given
by

η(t) =
1

τR

∫ t

−∞

dt′ e−(t−t′)/τRξ1(t). (J10)

The autocorrelation for η(t) is thus given by

〈η(t)η(0)〉 = 2

τ2R
e−t/τR

∫ 0

−∞

dt′ et
′/τR

∫ t

−∞

dt′′et
′′/τRδ(t′′ − t′)

(J11)

=
2

τ2R
e−t/τR

∫ 0

−∞

dt′ e2t
′τR =

1

τR
e−t/τR .

Since ξ0(t) and ξ1(t) are uncorrelated, we have
〈η(t)ξ0(t′)〉 = 0 and Eq. (J9) follows.
Model II with bR = 0

In this case the expression Eq. (J4) reduces to

C̃vv(ω) =
2a2R(1 + τ2vω

2)

τ2v
∣

∣ω2 − iω(τ−1
v + av)− τ−1

v (av + bv)
∣

∣

2 .

(J12)
We proceed in a similar fashion as for the bv = 0 case,
the comparison with Eq. (J2) gives

a2R
(av + bv)2

=
B

a+ τmb
, (J13a)

a2R = Ba. (J13b)

Equation (J12) has poles located at

ω± = i
τ−1
v + av

2
±

√

− (τ−1
v + av)2

4
+

av + bv
τv

. (J14)

We consider the expressions for ω++ω− and ω+ω−, which
must coincide with i/τb+ i/τp and −1/τbτb, respectively.
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This gives the conditions

τ−1
v + av = τ−1

m + a, (J15a)

(av + bv)/τv = aτ−1
m + b. (J15b)

Solving explicitly for the parameters of the non-
equilibrium model gives the following mapping

av = τ−1
m + a−

√

aτ−1
m + b

aτm
, (J16)

bv =
√

aτ−1
m + b

(√
aτm +

1√
aτm

)

− a− τ−1
m ,

τv =

√

aτ2m
a+ bτm

,

a2R = Ba,

where the time scale τv was chosen to be positive. The
friction kernel Γv(t) is composed of a positive delta peak
at the origin proportional to av = 0.27 min−1, followed
by a negative tail proportional to bv = −0.229 min−1.
The dynamics can be described by the following system

of two coupled degrees of freedom

u̇(t) = τ−1
v v(t)− τ−1

v u(t), (J17a)

v̇(t) = −avv(t)− bvu(t) + aRξ0(t). (J17b)

These equation of motion can in fact be derived from
the Hamiltonian

H =
1

2
(u− v)2 − 1

2

(

av
bv

+ 1

)

v2 . (J18)

Note that since av/bv < −1, the Hamiltonian is non-
negative for all u and v and thus describes a system with
a stable stationary state. For the conjugated variables
τvu̇(t) and −b−1

v v̇(t) we obtain the equations of motion

τvu̇(t) = v(t)− u(t) = −∂H

∂u
, (J19a)

−b−1
v v̇(t) =

av
bv

v(t) + u(t)− aR
bv

ξ0(t) (J19b)

= −∂H

∂v
− aR

bv
ξ0(t),

which are identical to Eqs. (J17).
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