The phylogenetic depth at which arbuscular mycorrhizal (AM) fungi harbor a coherent eco-logical niche is unknown, which has consequences for operational taxonomic unit (OTU)delineation from sequence data and the study of their biogeography. We tested how changes in AM fungi community composition across habitats (beta diver-sity) vary with OTU phylogenetic resolution. We inferred exact sequence variants (ESVs) toresolve phylotypes at resolutions finer than provided by traditional sequence clustering andanalyzed beta diversity profiles up to order-level sequence clusters. At the ESV level, we detected the environmental predictors revealed with traditional OTUsor at higher genetic distances. However, the correlation between environmental predictorsand community turnover steeply increased at a genetic distance ofc. 0.03 substitutions persite. Furthermore, we observed a turnover of either closely or distantly related taxa (respec-tively at or above 0.03 substitutions per site) along different environmental gradients. This study suggests that different axes of AM fungal ecological niche are conserved at dif-ferent phylogenetic depths. Delineating AM fungal phylotypes using DNA sequences shouldscreen different phylogenetic resolutions to better elucidate the factors that shape communi-ties and predict the fate of AM symbioses in a changing environment.