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Summary

� The phylogenetic depth at which arbuscular mycorrhizal (AM) fungi harbor a coherent eco-

logical niche is unknown, which has consequences for operational taxonomic unit (OTU)

delineation from sequence data and the study of their biogeography.
� We tested how changes in AM fungi community composition across habitats (beta diver-

sity) vary with OTU phylogenetic resolution. We inferred exact sequence variants (ESVs) to

resolve phylotypes at resolutions finer than provided by traditional sequence clustering and

analyzed beta diversity profiles up to order-level sequence clusters.
� At the ESV level, we detected the environmental predictors revealed with traditional OTUs

or at higher genetic distances. However, the correlation between environmental predictors

and community turnover steeply increased at a genetic distance of c. 0.03 substitutions per

site. Furthermore, we observed a turnover of either closely or distantly related taxa (respec-

tively at or above 0.03 substitutions per site) along different environmental gradients.
� This study suggests that different axes of AM fungal ecological niche are conserved at dif-

ferent phylogenetic depths. Delineating AM fungal phylotypes using DNA sequences should

screen different phylogenetic resolutions to better elucidate the factors that shape communi-

ties and predict the fate of AM symbioses in a changing environment.

Introduction

Arbuscular mycorrhizal (AM) fungi are a widespread group of
plant symbionts (Brundrett & Tedersoo, 2018) belonging to the
subphylum Glomeromycotina (Spatafora et al., 2016), and play a
key role in ecosystem functioning (Powell & Rillig, 2018). To
understand how organisms interact with their environments, it is
necessary to adequately group individuals into a biological entity
that harbors a coherent ecological niche or function. Descriptions
of fungal communities are now largely based on DNA sequenc-
ing data, where the sequences obtained are usually clustered into
operational taxonomic units (OTUs; Lindahl et al., 2013); that
is, groups of similar sequences at a given percentage of sequence
similarity. However, the appropriate sequence similarity level (i.e.
the phylogenetic resolution) at which these OTUs should be
defined remains debated, despite renewed efforts to appropriately
delineate evolutionary and/or ecologically coherent units in AM
fungi (Powell et al., 2011; Lekberg et al., 2014). This is because,
in AM fungi, we have still little understanding of the ecological
variation (and underlying trait variation) at different levels of

phylogenetic divergence (e.g. intra- vs interspecific genetic varia-
tion; Hazard & Johnson, 2018).

There is now compelling evidence that the community com-
position of AM fungi is interactively influenced by different abi-
otic and biotic drivers (e.g. soil pH and ecosystem type; Davison
et al., 2015). According to classic community ecology theory
(Vellend, 2016), these drivers filter organisms from a regional
pool based on their functional traits (e.g. capacity to associate
with a given group of plants, tolerance to acidic soils). However,
trait information is often unavailable for AM fungi, for which we
often only have access at best to the organisms’ identities (e.g.
OTUs) and their distribution. In this case, the phylogenetic
depth at which these ecological traits are conserved is pivotal for
elucidating aspects of the environment that drive organism distri-
bution (Martiny et al., 2015). For instance, consider two closely
related phylotypes (a1 and a2) adapted to colonize grasslands and
two other closely related phylotypes (b1 and b2) adapted to colo-
nize forests. Phylotypes a1 and a2 (and b1 and b2) are found in
the same broad habitat but occur in different microhabitats: phy-
lotypes a1 and b1 are present in acidic soils, whereas phylotypes
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a2 and b2 are found in alkaline soils. Because the habitat prefer-
ence (grasslands/forests) is conserved at the level of broad clades,
its correlation with organism distribution will be strong at this
broad phylogenetic resolution but detectable to a lesser extent at
the phylotype level. By contrast, lumping the two fine-scale phy-
lotypes into the broader clade will obscure soil pH effects. In
summary, studying community composition at one phylogenetic
resolution (typically at the species or one OTU level) most proba-
bly gives only partial information on the relative importance of
the drivers of organism distribution (Hanson et al., 2012). These
drivers could be identified by screening the turnover of AM fun-
gal communities at different OTU phylogenetic resolutions
(Groussin et al., 2017).

The beta diversity patterns (i.e. similarity in community com-
position across spatial and/or environmental gradients) of AM
fungi are likely to change with OTU phylogenetic resolution
because their functional traits are conserved at different phyloge-
netic depths. Some traits are similar among closely related species
and others are not. For example, spore size and amount pro-
duced, as well as investment in extra- or intraradical mycelium,
appear conserved at the family level (Hart & Reader, 2002;
Maherali & Klironomos, 2007; Powell et al., 2009; Chagnon
et al., 2013). Likewise, family- or order-level community compo-
sition is well predicted by spatial variation in soil pH, soil phos-
phorus (P) and nitrogen (N) content, or soil depth (Camenzind
et al., 2014; Rodr�ıguez-Echeverr�ıa et al., 2017; Roy et al., 2017;
Sosa-Hern�andez et al., 2018a; St€urmer et al., 2018a; Treseder
et al., 2018), supporting a phylogenetic conservatism of niche
and traits at a coarse phylogenetic resolution. On the other hand,
AM fungi exhibit extensive genetic variation within morphologi-
cally (spore-based) defined species, which can affect compatibility
with their host plant (Angelard et al., 2014) and traits such as
extraradical hyphal density (Munkvold et al., 2004; Koch et al.,
2006; Mensah et al., 2015): the variability in these traits and the
consequences for host performance were higher within than
between AM fungal species. Accordingly, though AM fungal
community composition has been shown to vary consistently
across land-use management or vegetation types at a regional
scale regardless of OTU phylogenetic resolution, the association
with a particular plant community type at the local scale was bet-
ter resolved at a fine OTU phylogenetic resolution (Lekberg
et al., 2014; Powell and Sikes 2014). These observations suggest
that screening multiple phylogenetic resolutions, ideally both at
the inter- and intraspecific levels (Johnson et al., 2012; Sanders &
Rodriguez, 2016), would help to better understand the ecology
of AM fungi.

Ecological variation at the intraspecific level is challenging to
infer from DNA sequence data owing to the difficulties in differ-
entiating genuine sequences from PCR and sequencing artifacts.
These latter are often corrected by clustering sequences at a given
similarity threshold (Lindahl et al., 2013; Hart et al., 2015),
which is often a compromise between the rate of errors produced
by molecular techniques and biological variation, hence resulting
in the loss of intraspecific variability. New bioinformatics meth-
ods now allow better discriminating genuine sequences from arti-
factual ones. These genuine sequences are termed exact sequence

variants (ESVs, also known as amplicon sequence variants) and
may diverge from one another by differences as subtle as one
nucleotide (Eren et al., 2015; Callahan et al., 2016; Edgar, 2016).
Inferring ESVs has advantages over classical OTUs. The first
advantage is because ESVs represent a fundamental unit whereas
traditional OTUs are not – a genuine DNA sequence that is com-
parable across studies (Callahan et al., 2017). The second advan-
tage is because ESVs keep valuable genetic information that is
lost in traditional OTUs (Selosse et al., 2016), thereby increasing
the phylogenetic resolution of observation. However, we still do
not know whether the finest phylogenetic resolution (i.e. ESVs)
is useful for inferring ecological processes in AM fungal commu-
nities, or if it only increases noise-to-signal ratio.

We here inferred ESVs to resolve phylotypes at resolutions
finer than provided by traditional sequence clustering, and we
implemented a phylogenetic decomposition of beta diversity to
test whether and how beta diversity patterns change across phylo-
genetic resolutions from the ESV level to order-level sequence
clusters. We used two datasets of AM fungal large-subunit (LSU)
ribosomal DNA (rDNA) sequences generated with an Illumina
MiSeq platform: a chronosequence of 52 yr of agricultural recul-
tivation after open-cast mining (Roy et al., 2017; hereafter
‘Chronosequence’) and a soil depth diversity survey in an agricul-
tural field (Sosa-Hern�andez et al., 2018a; hereafter ‘Soil depth’),
both in western Germany. Each dataset spanned variations in sev-
eral aspects of the environment that likely impose selection on
traits that are conserved at different phylogenetic depths. Given
the variable degree of phylogenetic trait conservatism in AM
fungi, we hypothesize that, depending on the environmental gra-
dient considered, we will observe a turnover of either closely or
distantly related taxa.

Materials and Methods

Dataset description

The Chronosequence dataset consists of 10 fields spanning a recul-
tivation gradient of 52 yr since open-cast mining near J€ulich,
Germany. Briefly, the recultivation process starts from a mix of
old agricultural soil and the overburden loess layer from where
lignite is extracted. It then consists of three phases: (1) 3 yr of soil
restoration with alfalfa, (2) 2 yr of conversion to conventional
agriculture, and (3) implementation of conventional agriculture
by local farmers. In each field, five replicated soil cores were col-
lected. The Soil depth dataset was obtained from an agricultural
field near Bonn, Germany. It consists of soil samples at depths of
10–30 cm and 60–75 cm, and distributed in three soil compart-
ments: the rhizosphere (soil directly influenced by roots), drilo-
sphere (soil directly influenced by earthworms), and bulk soil,
replicated three times. The same protocol (including primers,
PCR conditions, and sequencing platform) was used to character-
ize the composition of the AM fungal communities in both
datasets – see Roy et al. (2017) and Sosa-Hern�andez et al. (2018a)
for the detailed protocols. Amplicons of the LSU ribosomal
(rRNA) gene were sequenced on an Illumina MiSeq platform
using the 29 300 paired-end chemistry. Raw reads and sample
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metadata are freely available at https://doi.org/10.5061/dryad.
t096s (Chronosequence dataset) and https://doi.org/10.6084/m9.f
igshare.8850119 (Soil depth dataset).

ESV inference

We used DADA2 (Callahan et al., 2016) in R (R Core Team 2017)
to obtain denoised, chimera-free, nonsingleton ESVs. Primers
were removed and the forward and reverse reads were trimmed at
270 bp and 220 bp, respectively, due to the base-call quality
degradation in the 30 end of the reads. Sequence trimming at
these positions permits a minimal overlap of 20 bp between the
forward and reverse paired-end reads, which is necessary for their
assembly, and an additional 70 bp of sequence length variation,
which corresponds to that observed in the reference sequences of
Kr€uger et al. (2012) for our amplified LSU region (length of ref-
erence sequences is 349–419 bp). Sequences with ambiguous
bases were excluded, and the maximum expected number of
errors was set to two and five for forward and reverse reads,
respectively. We chose this threshold, instead of one, the default
parameter of the USEARCH OTU pipeline (Roy et al., 2017),
because DADA2 infers genuine sequences using an error-rate
model. Setting a higher threshold of expected errors allowed
keeping a substantial sequencing depth equivalent to that of the
USEARCH procedure. ESVs were inferred on a sample basis. Sin-
gleton ESVs were considered as artifactual and removed. ESVs
for which the sequence corresponded to subsequences of two
more abundant sequences were considered chimeras and
removed. Taxonomic identity of ESVs was inferred using BLAST

against reference Glomeromycotina sequences (Kr€uger et al.,
2012). Taxonomic assignment was done for queries having at
least 90% of sequence similarity, 90% of sequence coverage, and
a minimum e-value of 10�50 against their closest reference. The
sequences not fulfilling these criteria were considered nonGlom-
eromycotina and were excluded from the analysis.

Additional filtering of putative PCR errors

Despite our conservative sequence data curation and the low pro-
portion of error sequences retrieved with DADA2 (Callahan et al.,
2016), our dataset could still contain PCR and sequencing errors.
Indeed, DADA2 assumes independent errors in the model, but
some errors tend to be repeatable and can co-occur with the true
sequences from which they originate (Coissac et al., 2012). The
co-occurrence of errors with their genuine sequence, besides
inflating diversity estimate, can hence artificially inflate the corre-
lation between phylogenetic beta diversity and environmental
gradients. To correct for this potential bias, we used LULU in R
(Frøslev et al., 2017). We used the default parameters based on
the co-occurrence and relative abundance relationships between
closely related ESVs. We considered as a PCR error the sequences
that are consistently at a lower abundance than their true
sequence relative across all samples. Putative PCR error sequences
were removed without summing their read counts to the inferred
true sequence relative. LULU curation served two purposes: (1) to
examine the robustness of the results to putative repeatable

sequence errors; (2) to estimate lower and higher boundaries of
phylogenetic resolution at which biological units correlate with
the environment in case true diversity is removed.

Phylogenetic tree reconstruction

ESVs were aligned to the reference alignment of partial small
subunit (SSU)–internal transcribed spacer (ITS)–LSU rDNA
Glomeromycotina sequences (Kr€uger et al., 2012), which we used
as a phylogenetic backbone. The alignments were performed
using MAFFT (Katoh et al., 2002) with the -addfragments option
to align short sequences to an alignment of long sequences. A
phylogenetic tree was built with RAXML (Stamatakis, 2014)
from these alignments, containing both ESVs and reference
sequences, by conducting a bootstrap analysis (100 bootstraps)
and searching for the best-scoring maximum-likelihood tree
under a GTRGAMMA model of nucleotide substitution. The
nucleotide sequence divergence expressed in mean substitution
per site (subs/site) is hereafter referred to as genetic distance. The
phylogenetic tree was analyzed and visualized in R using APE (Par-
adis et al., 2004) and GGTREE (Yu et al., 2017).

Decomposition of beta diversity across phylogenetic
resolutions

Beta diversity through time In order to assess beta diversity pat-
terns at different OTU phylogenetic resolutions, we used the beta
diversity through time (BDTT) approach (Groussin et al., 2017)
and clustered ESVs into OTUs by steps of nucleotide sequence
divergence (hereafter referred to as OTUBDTT; ESVs are
OTUBDTT0s) across the phylogenetic tree. The set of samples in
which an OTUBDTT occurs is defined as the union of the samples
where each ESV belonging to this OTUBDTT is found. The
abundance of the OTUBDTT is the sum of the count of its respec-
tive ESVs. For each genetic distance, a new OTU contingency
table was created. The function was adapted to cluster tree edges
in nonultrametric trees to maintain cluster monophyly and, as
such, uses directly the estimated evolutionary distances. This
method will tell us at which phylogenetic resolution the OTUs
best correlate with the different environmental gradients by test-
ing whether the genetic distance used to define phylotypes is too
narrow (i.e. there is noise, and it is therefore necessary to lump
finer OTUs into broader OTUs to detect a signal) or has insuffi-
cient resolution to detect a correlation with the environmental
(i.e. it is necessary to split broader OTUs into finer OTUs to
detect a signal).

UPARSE OTU clustering We used also UPARSE OTU clustering,
a common approach in AM fungal ecology (Horn et al., 2014;
Roy et al., 2017; Sosa-Hern�andez et al., 2018a), to test the consis-
tency of beta diversity patterns between different methods.
Sequence processing followed Roy et al. (2017). Briefly, paired-
end reads were merged and quality filtered in USEARCH (Edgar
2010). Sequences were dereplicated and singletons removed.
Sequences that did not overlap our expected region in the refer-
ence Glomeromycotina sequences (Kr€uger et al., 2012) were
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removed using MOTHUR (Schloss et al., 2009; Kozich et al., 2013;
Schloss, 2013). Sequences were clustered into OTUs using
UPARSE (hereafter referred to as OTUUPARSE; Edgar, 2013) at
sequence similarity ranging from 99% to 70% to test the robust-
ness of our phylogenetic decomposition of beta diversity to OTU
clustering methods. LULU curation was run, as described earlier,
to discard putative PCR errors.

Mean nearest taxon distance and mean pairwise distance Both
the BDTT and the UPARSE clustering rely on fixed genetic dis-
tance thresholds, and hence do not take into account the different
rates of trait evolution across clades, which are nonnegligible (e.g.
€Opik et al., 2010; Powell et al., 2011; Lekberg et al., 2014). To
consider this aspect, we additionally used beta diversity metrics
that measure the shared evolutionary history between communi-
ties (measured in branch length) to further estimate the depth of
phylogenetic turnover across different environmental gradients
without an OTU clustering step. To this end, we calculated the
mean nearest taxon distance (MNTD) and the mean pairwise
distance (MPD) using PICANTE in R (Kembel et al., 2010).
MNTD and MPD are averaged measures of the phylogenetic dis-
tance between pairs of taxa (ESVs here) drawn from two commu-
nities at fine (MNTD) or coarse (MPD) phylogenetic resolution.

Taxonomic resolution To test whether taxonomic annotations
reflect phylogenetic OTU clustering and phylogenetic beta diver-
sity measures, we used the taxonomic annotations of ESVs to
cluster them (and to sum their abundances) at taxonomic ranks
from the species to order level.

Statistical analyses

Estimating the correlation between beta diversity at different
OTU phylogenetic resolutions and the environmental predic-
tors To assess how the beta diversity patterns at different OTU
phylogenetic resolutions correlated to environmental gradients,
we used nonparametric multivariate ANOVA (PERMANOVA;
Anderson, 2001) in VEGAN (Oksanen et al., 2016) based on Bray–
Curtis dissimilarity. This method partitions the variance in beta
diversity among the different environmental predictors. For the
Chronosequence dataset, 24 soil variables were measured for the
50 samples considered here. We summarized these soil variables
into three orthogonal ecological gradients, corresponding to the
first three principal components of a principal components analy-
sis. Principal component 1 (PC1; 44.6% of variance) corresponds
to a gradient of soil extractable P and total N contents that
increase from young (1- to 3-yr-old fields and 4- to 5-yr-old
fields) to old fields (> 10 yr old; Supporting Information Fig. S1).
Principal component 2 (PC2; 17.7%) corresponds to a gradient
of inorganic N, which peaks in the 5- to 10-yr-old fields. Princi-
pal component 3 (PC3; 9.7%) differentiated fields from one
another across time with a peak in magnesium in the 10-yr-old
field. From now and on, PC1, PC2, and PC3 refer to the envi-
ronmental predictors used for the Chronosequence dataset. For the
Soil depth dataset, we used the soil layer (topsoil vs subsoil) and
compartment (rhizosphere, drilosphere, bulk soil) of 18 samples

from one agricultural field (Sosa-Hern�andez et al., 2018a). The
significance of the environmental predictors was assessed with
999 Monte Carlo permutations. Beta diversity patterns at differ-
ent phylogenetic resolutions and for each beta diversity metric
were visualized using a principal coordinates analysis (PCoA).

To ensure that our results were due to a genuine phylogenetic
signal (i.e. departing from random phylogenetic relationships),
we randomized the tip labels of the phylogeny while keeping con-
stant the community composition as in Groussin et al. (2017)
100 times. Variance partitioning was conducted for each permu-
tation step to generate a null distribution of the explained vari-
ance (PERMANOVA R2) of each variable. R2 values were
considered not due to chance when departing from the 5–95%
quantiles of the null distribution. A departure from the null dis-
tribution further indicates that an increase in explained variance
at coarser phylogenetic resolutions is not solely due to a reduction
in OTU number. We also took into account the uncertainty in
phylogenetic tree topology in our analysis. Variance partitioning
was repeated for each of the 100 bootstrapped RAXML trees, and
predictors were deemed significant if the P values were < 0.01 for
at least 90% of the trees.

Decomposition of MNTD and MPD phylogenetic beta diver-
sity measures into phylogenetic distance classes To estimate
the phylogenetic similarity between communities across the envi-
ronmental gradients, we further decomposed the correlation of
MNTD and MPD phylogenetic beta diversity with the environ-
mental gradients into small (shallow phylogenetic turnover) and
large (deep phylogenetic turnover) phylogenetic distance classes
using Mantel correlogram analysis in ECODIST (Goslee & Urban,
2007). The sign of the correlation indicates whether communities
within a phylogenetic distance class are found in similar (positive
correlation) or dissimilar (negative correlation) environments
compared with communities in the other distance classes. The
significance was assessed with 999 Monte Carlo permutations of
the phylogenetic distance matrix.

Phylogenetic signal of ESV ecological traits To complement
the beta diversity analyses, we further tested whether closely
related ESVs tend to share similar ecological traits (i.e. phyloge-
netic signal) and estimated the phylogenetic depth of this correla-
tion. To this end, we conducted phylogenetic correlograms
analyses using the PHYLOSIGNAL R package (Keck et al., 2016) to
test a phylogenetic signal in ESV co-occurrence (i.e. whether
closely related ESVs tend to occur in the same samples) and in
the optimum of each of the environmental predictors (as a mea-
sure of ecological traits). Two closely related ESVs may not co-
occur yet be found in samples of similar environmental values.
The co-occurrence between any pair of ESVs was measured as
the Euclidean distance of ESV presence/absence in each sample.
We inferred the ecological trait of each ESV by calculating their
optimum for each of the environmental predictors (i.e. PC1,
PC2, PC3, soil depth, and compartment). These optima corre-
sponded to the abundance weighted mean of each of the environ-
mental predictors for each ESV. Phylogenetic correlograms were
calculated on a continuous basis by computing Moran’s I index
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(Moran, 1948) in the case of PCs, soil depth, and compartment
class optima, or with the Mantel statistic in the case of co-occur-
rence. A matrix of phylogenetic weights was computed with
default parameters to account for the nonuniform distribution of
tips within the phylogeny (e.g. caused by different rates of diver-
sification between lineages or phylogenetic sampling extent). Sig-
nificance was tested using 100 nonparametric bootstrap
resamplings of the phylogenetic tree to estimate the 95% confi-
dence interval (CI) of the correlation. CI curves not overlapping
with zero are significant.

Identification of clades that covary with the environmental pre-
dictors To further identify clades at different phylogenetic
depths that covary in abundance with each of the environmental
predictors, the correlation of node abundance (sum of the count
of a node’s respective ESVs) with each environmental predictor,
for all nodes along the phylogenetic tree, was further tested with
a linear model and corrected for multiple testing using the false
discovery rate (Benjamini & Hochberg, 1995).

Sensitivity analysis To assess to what extent the approaches and
OTU phylogenetic resolution mentioned earlier yielded similar
results in terms of beta diversity, we conducted a sensitivity analy-
sis by comparing beta diversity patterns with Mantel tests (Pear-
son’s R correlation coefficient) using VEGAN (Oksanen et al.,
2016). It revealed that beta diversity patterns varied according to
the phylogenetic resolution at which they were assessed and not
the method used (Figs S2–S5). Therefore, in the following, we
discuss the BDTT analysis using the LULU curated dataset.

Results

Number of OTUs across phylogenetic depths

In total, we obtained 574 and 233 Glomeromycotina ESVs in
the Chronosequence and Soil depth datasets, respectively, of which
240 (42%) and 75 (33%), respectively, were kept after LULU cura-
tion, accounting for 84% and 77% of the reads. In both the
Chronosequence and Soil depth datasets, we observed a drop in the
number of OTUs from 0.01 to 0.03 subs/site (Figs 1–3a,c).
There was a six-fold decrease in the number of OTUBDTTs at a
genetic distance of 0.03 subs/site (44 and 15 OTUBDTT0.03s in
the Chronosequence and Soil depth datasets; Figs 1–3a,c), indicat-
ing that ESV inference resolved a high diversity within a range of
sequence divergence from 0 to 0.03 subs/site. The number of
OTUBDTTs continued to decrease more gently up to 0.1 subs/site
(12 and 10 OTUBDTT0.1s). As a matter of comparison, tradi-
tional OTU clustering at 97% with UPARSE (OTUUPARSE0.03)
yielded 52 (Chronosequence dataset) and 22 (Soil depth dataset)
OTUs, which is in between OTUBDTT0.02 and OTUBDTT0.03.

Environmental predictors of AM fungal beta diversity
across OTU phylogenetic resolutions

For the Chronosequence dataset, PC1 was the strongest predictor
of AM fungal beta diversity and was significant at all OTU

phylogenetic resolutions, but the variance explained varied
strongly (Fig. 3b): PC1 explained 11% of the variance at the ESV
level, but rose strongly to 22% at 0.03 subs/site and rose again to
30% at 0.1 subs/site. In addition, PC2 also explained 8% of the
variance at the ESV level, rose to 12% at 0.03 subs/site, where it
peaked, and then dropped. PC3 explained little but significant
variance in community composition at the ESV level and was not
significant at higher genetic distances. These results are in agree-
ment with our PCoA analyses (Fig. S3): at 0.2 subs/site, samples
clustered into two groups corresponding to fields recultivated for
less (low PC1 value) and for more (high PC1 value) than 10 yr.
At 0.03 subs/site, communities from the three first years of recul-
tivation (low PC2 value) and the 4- and 5-yr old fields (high PC2
value) clustered apart from each other and formed two new clus-
ters with low variability within each cluster. At the ESV level,
fields from each of these clusters were further separated according
to year of recultivation.

Decomposition of MNTD and MPD beta diversity into
classes of low to high phylogenetic dissimilarity revealed estimates
of community phylogenetic turnover across environmental gradi-
ents similar to the BDTT analysis. Communities within an
MNTD of 0.03 subs/site and an MPD of 0.3–0.6 subs/site were
positively correlated with PC1 (i.e. these communities tend to
occur in samples of similar PC1 values), whereas communities
with higher phylogenetic dissimilarity (MNTD > 0.03 subs/site
and MPD > 0.03–06 subs/site) were negatively correlated with
PC1 (i.e. tend to occur in samples of dissimilar PC1 values;
Fig. 4a,b). The correlation with PC2 was difficult to decompose
because the relationship with MNTD and MPD was nonmono-
tonic, indicating low phylogenetic turnover for high PC2 dis-
tances (Fig. S8); yet, the positive correlation of MPD to PC2 was
observed for lower genetic distance classes than PC1; and at high
distance classes, MPD negatively correlated to PC2 while it was
still positively correlated to PC1 (Fig. 4b).

In the Soil depth dataset, soil layer was the unique predictor of
beta diversity and was significant at all genetic distances (Figs 3,
S5), but, again, the explained variance varied strongly. Soil layer
explained 28% of the variance at the ESV level and rose to 45%
to reach a plateau at 0.03 subs/site. It then increased slightly from
0.15 to 0.16 subs/site. Soil compartment effects were never sig-
nificant. MNTD was strongly correlated with soil layer within
the first genetic distance class of 0.03 subs/site (Fig. 4c). MPD
was positively and negatively correlated at intermediate and high
distance classes, respectively (Fig. 4d). Neither MNTD nor MPD
correlated with soil compartment.

In summary, our results show that clustering at c. 0.03 subs/
site has lumped ESVs into phylogenetically and ecologically
coherent units that strongly correlate with the environment. They
also show a turnover of distantly related AM fungal clades
(> 0.03 subs/site) across PC1 and soil layer, and a turnover of rel-
atively closely related AM fungal clades (c. 0.03 subs/site) across
PC2. PERMANOVA P values did not change across the 100
bootstrapped trees, supporting that these results were robust to
phylogenetic uncertainty. PERMANOVA R2 were not comprised
within the 5–95% distribution of null distribution of R2 from
100 phylogenetic randomizations, further indicating that these
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results derived from a genuine phylogenetic signal and that none
of the changes in the correlation strength across phylogenetic res-
olutions could be solely attributed to change in OTU number.

Phylogenetic signal of ESV ecological traits

In the Chronosequence dataset, we observed a positive autocorrela-
tion (Mantel’s R = 0.05) in ESV co-occurrence up to deep phylo-
genetic distances classes (Fig. 5a). However, PC1 optimum had

the highest positive autocorrelation (Moran’s I = 0.3) and the sig-
nal was significantly positive up to 0.4 subs/site patristic distance
and significantly negative at largest genetic distances (Fig. 5b).
PC2 optimum showed positive autocorrelation (Moran’s
I = 0.09) up to 0.2 subs/site patristic distance (Fig. 5c). We
observed similar results in the nonLULU curated dataset, but the
phylogenetic signal for PC2 was deeper (Fig. S9). In the Soil
depth dataset, a positive phylogenetic signal was significant only
for co-occurrences (Fig. 5d), but in the noncurated LULU dataset

Fig. 1 Maximum-likelihood phylogenetic tree of arbuscular mycorrhizal fungal exact sequence variants (ESVs) for the Chronosequence dataset. The
phylogenetic clustering of ESVs at a genetic distance of 0.03 mean substitutions per site is highlighted in blue and gray rectangles. Significant correlation
between the abundance of clades (nodes) across the phylogeny and principal component (PC) 1 (blue), PC2 (orange), or PC3 (gray) is depicted at each
node. Bar, 0.1 mean substitutions per site. The heatmap on the right of the tree shows the centered and scaled PC1, PC2 and PC3 optima.
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the soil layer optimum, and soil compartment to a lesser extent,
was positively autocorrelated for ESVs as distant as 0.6 subs/site
patristic distance (Moran’s I = 0.2) and negatively autocorrelated
after 1 sub/site patristic distance (Fig. S9).

These results are consistent with the beta diversity analyses.
They indicate that closely related ESVs tend to be found in the
same samples; and if not, then in samples with similar soil condi-
tions. PC1 and soil layer optimum had the strongest phylogenetic

signal, whereas PC2 optimum was conserved at a shallow phylo-
genetic depth.

Identity of clades that covary with the environmental
predictors

In the Chronosequence dataset, multiple nodes at all phylogenetic
depths showed significant correlation with PC1: notably,

Fig. 2 Maximum-likelihood phylogenetic tree of arbuscular mycorrhizal fungal exact sequence variants (ESVs) for the Soil depth dataset. The phylogenetic
clustering of ESVs at a genetic distance of 0.03 mean substitutions per site is highlighted in blue and gray rectangles. Significant correlation between the
abundance of clades (nodes) across the phylogeny and soil layer (blue) or soil compartment (orange) is depicted at each node. Bar, 0.1 mean substitutions
per site. The heatmap on the right of the tree shows the centered and scaled soil layer and soil compartment optima.
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members of Rhizophagus, Funneliformis, and Claroideoglomus,
including the Glomerales node and to a lesser extent Diversispora,
are mostly found in young fields (low PC1), whereas
Archaeospora members are found in old fields (high PC1; Figs 1a,
S10). By contrast, only nodes mostly at or contained within 0.03
subs/site genetic distance correlated with PC2, including mem-
bers of Funneliformis, Diversispora, and Claroideoglomus, found at
either low or high PC2 values. In the Soil depth dataset, the
Claroideoglomus node and its members were found in subsoil,
whereas Diversispora and the node Diversispora/Scutellospora
(Diversisporales) were found in topsoil (Figs 1b, S11). The sig-
nificant increase in (relative) abundance of the Glomerales node
with soil depth is probably driven by a strong increase in the
abundance of Claroideoglomeraceae and does not correspond
with an increase in abundance of other members of this node (i.e.
Funneliformis, Glomus, and Rhizophagus).

Discussion

In this study, we tested whether and how beta diversity patterns
change with OTU phylogenetic resolution from the ESV to
order-level sequence clusters. At the ESV level, we were able to
detect changes in community composition similar to traditional
OTU clustering methods or at coarser phylogenetic resolutions.
However, we showed a stronger correlation between the environ-
mental predictors and beta diversity assessed at coarser phyloge-
netic resolutions, especially at c. 0.03 subs/site. Furthermore, we
observed a turnover in either distantly or closely related clades
along different environmental gradients, such that the variance
explained by different environmental predictors varied with
OTU phylogenetic resolution. This suggests that accounting for
the evolutionary history of AM fungi could help better under-
standing of the drivers of their spatial distribution.

(a) (c)

(b) (d)

Fig. 3 Predictors of operational taxonomic units (OTUs) beta-diversity in arbuscular mycorrhizal (AM) fungal communities across phylogenetic resolutions.
Number of OTUs at different phylogenetic resolutions for the (a) Chronosequence and (c) Soil depth datasets. ESVs were agglomerated from a genetic
distance (x-axis) of 0 (the ESV resolution, i.e. the tips of the phylogenetic tree) to a distance of 0.3, by steps of 0.01 nucleotide substitution per site. The
dotted vertical lines indicate the mean genetic distance among ESVs within taxa, at each taxonomic rank. (b, d) Variance partitioning of AM fungal
communities at different OTU phylogenetic resolutions. The y-axis is the part of explained variance (R2) in community dissimilarities (Bray–Curtis) by
principal component (PC) 1 (blue), PC2 (orange), and PC3 (gray) for the Chronosequence dataset, and by soil layer (blue) and soil compartment (orange)
for the Soil depth dataset. Shaded areas correspond to the 5–95% quantiles of the R2 calculated with 100 randomizations of the phylogeny. Diamond at
the top of the figure indicates significant R2 values (P < 0.01) for > 90% of the 100 bootstrapped trees. The figure presents results after LULU correction (see
Materials and Methods section). Results spanning the entire tree and without LULU correction are presented in Supporting Information Figs S6 and S7,
respectively.
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At the ESV level, we statistically detected the environmental
predictors revealed with traditional OTUs or at higher genetic
distances, consistent with previous results for bacteria (Thomp-
son et al., 2017) and fungi using the ITS marker (Glassman &

Martiny, 2018). This was because closely related ESVs tend to
occur in the same samples. However, we showed a strong increase
in the correlation between most environmental predictors and
beta diversity at a genetic distance of c. 0.03 subs/site, and even

(a) (b)

(c) (d)
Fig. 4 Predictors of phylogenetic beta
diversity in arbuscular mycorrhizal fungal
communities across phylogenetic resolutions.
Pearson’s RMantel correlograms between
(a) the weighted mean nearest taxon
distance (MNTD) and (b) the weighted mean
pairwise distance (MPD) phylogenetic beta
diversity measures and principal component
(PC) 1 (blue), PC2 (orange), and PC3 (gray),
for the Chronosequence dataset and
between (c) weighted MNTD and (d)
weighted MPD, and soil layer (blue) and soil
compartment (orange) for the Soil depth
dataset. Significant correlation coefficients
(P < 0.05) are indicated by filled symbols.

(a) (b) (c)

(d) (e) (f)

Fig. 5 Phylogenetic signal in the ecological
traits inferred for exact sequence variants
(ESVs). Phylogenetic correlograms between
pairwise phylogenetic (patristic) distances of
ESVs and (a) their co-occurrence, (b) their
principal component (PC) 1 optimum, and (c)
their PC2 optimum, across genetic distances,
for the Chronosequence dataset, and (d)
their co-occurrence, (e) their soil layer, and
(f) their soil compartment for the Soil depth
dataset. The solid bold black line represents
(a, d) the Mantel correlation and (b, c, e, f)
Moran’s I index of autocorrelation. The
dashed black lines represent the lower and
upper bounds of the 95% confidence
interval. The horizontal black line indicates
the expected value of Mantel Pearson’s R or
Moran’s I under the null hypothesis of no
phylogenetic autocorrelation. Colored bar
along the x-axis indicates no correlation
(black) or significant (P < 0.05) positive (red)
or negative (blue) correlation, respectively.
See Supporting Information Fig. S9 for the
results without LULU curation.
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higher for certain environmental predictors. This shows that clus-
tering ESVs into OTUs at 0.02–0.04 subs/site (and 0.03–0.05
subs/site for the nonLULU-curated dataset), or higher, reduced the
noise in the biological signal by lumping closely related ESVs that
occur in otherwise similar environments but in different commu-
nities. These results support the idea that fungal community
assembly, and in particular AM fungal communities, are gov-
erned by environmental selection of organisms exhibiting strong
phylogenetic niche conservatism (Lekberg et al., 2014; Powell &
Sikes, 2014; Botnen et al., 2018). In this case, given that AM
fungi exhibit a significant degree of phylogenetic niche conser-
vatism, clustering ESVs into OTUs at c. 0.03 subs/site or higher
may serve a better purpose for niche modeling by increasing the
power to detect correlations with environmental predictors (Pow-
ell & Sikes, 2014).

Interestingly, for both the Chronosequence and Soil depth
datasets, the beta diversity approaches based on a phylogenetic
tree (BDTT, MNTD, and MPD) converged towards c. 0.03
subs/site as a level of evolutionary divergence carrying a strong
ecological specialization signal. This threshold to delineate AM
fungal OTUs with LSU will certainly be lower for SSU and
higher for ITS (Thi�ery et al., 2016); this may change when study-
ing other organisms and, as shown here, with other environmen-
tal gradients. Interestingly, the number of OTUs plateaued after
0.03 subs/site (both after and before LULU curation). These char-
acteristics indicate that OTUs at 0.03 subs/site can be defined as
ecologically coherent biological units, which could be species
(Bruns et al., 2018). More broadly, biological units that are
simultaneously evolutionarily and ecologically coherent can be
functional groups amenable to quantitative PCR monitoring.

Our results suggest an additional ecological structure in beta
diversity at the ESV level: in the Chronosequence dataset, we
observed a weak but significant correlation between beta diversity
and PC3, and a split among each fields recultivated from 1 to
5 yr, which was not the case at coarser phylogenetic resolutions,
including when considering OTUUPARSE. This result is sup-
ported in our sensitivity analysis by the slight clustering of beta
diversity patterns at the ESV level apart from the other beta diver-
sity patterns inferred at relatively fine phylogenetic resolutions.
What biological unit an ESV captures remains unknown, how-
ever, and it would ultimately depend on the rate of evolution of
the targeted gene and clades. The observed diversity of LSU vari-
ants within a range of sequence divergence from 0 to 0.03 subs/
site is consistent with estimates of intraspecific diversity obtained
from single isolates and spores within Rhizophagus irregularis and
Gigaspora margarita (Thi�ery et al., 2016), suggesting that succes-
sional population processes were captured. Through ESV infer-
ence, we could separate the process of sequence denoising from
the biological unit delineation, with the potential to infer the eco-
logical variation at intra- vs interspecific levels.

Our results show that the degree of phylogenetic turnover
among AM fungal communities differs along different environ-
mental gradients. We observed a turnover of distantly related
clades across PC1 and soil depth (clades diverging at least by 0.2
subs/site), whereas clades at or within a genetic distance of c. 0.03
subs/site varied along PC2. These results suggest that ecological

specializations to different aspects of the environment (e.g. soil P
and N content, soil depth) are conserved at different phylogenetic
depths in AM fungi. This could reflect the primary factors
imposing pressure on the AM symbiosis. For instance, fungi
reported to have a ruderal strategy, such as Funneliformis,
Rhizophagus, and Claroideoglomus within the Glomeraceae (Hart
& Reader, 2002; Chagnon et al., 2013), were abundant in young
fields, whereas Archaeospora only occurred in soils recultivated for
> 10 yr. PC1 represented a strong temporal gradient, with steep
variations in plant-available P content. The occurrence and abun-
dance of AM fungi across this gradient are probably based on
their ability to disperse, colonize, and persist in soil and roots,
and maintain an association with plants in soils of different P
content. The strong mutual exclusion of Diversispora/
Scutellospora found in topsoil and of Claroideoglomus found in
subsoil (Soil depth dataset) and in young fields where the sub-
soil : topsoil mix has been recently deposited (Chronosequence
dataset) indicates that some Claroideoglomus fungi cannot persist
in topsoil and/or have specialized to subsoil (Sosa-Hern�andez
et al., 2018b), a habitat with low plant-carbon supply probably
selecting for stress-tolerant fungi. Our results are consistent with
colonization–persistence or competitors–stress tolerators–ruderals
life-history strategies probably being conserved at the family level
(Hart & Reader, 2002; Chagnon et al., 2013). They are also con-
sistent with P uptake being the primary function of AM fungi
(Smith & Read, 2008). PC2 represented a strong increase in
inorganic N availability but also in N : P in fields recently con-
verted to agriculture. The turnover of closely related AM fungi
along PC2 contradicts the idea that AM fungal association with
N availability (plant-available N in our case) is conserved at fam-
ily or genus level (Treseder et al., 2018). This discrepancy could
be due to the difference in the study ecosystems (natural or agri-
cultural ecosystems), to fungal physiological requirement (e.g.
stoichiometry) but also to the difficulty in disentangling con-
founding abiotic and/or biotic factors. Along with investigations
on isolates, further research conducted at multiple phylogenetic
resolutions will certainly help test whether soil P, more than soil
N content, could have driven the early diversification of AM
fungi.

Inferring life-history strategies and functions in fungi remains
difficult (Powell & Rillig, 2018; Treseder et al., 2018). We show
that one could infer such traits from distribution data based on
DNA sequencing when coupled with contextual parameters,
which is a promising result given that DNA-based assessments of
biodiversity are now accumulating. Increasing spatial extent and
decreasing spatial grain will increase environmental heterogeneity
and capture environmental gradients of varying steepness and
with additional importance for the AM symbiosis (e.g. vegetation
characteristics, climate) in addition to an increased breadth of
AM phylogenetic diversity. It will further reveal the ecological
variation at different levels of phylogenetic divergence in AM
fungi and narrow the estimated depth of phylogenetic conser-
vatism of these ecological traits. For example, traits variation at
very fine phylogenetic resolution could be relevant for subtle
environmental variation (Powell & Sikes, 2014) and might be
resolved with ESV inference. Such variation could exist, for
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instance, between extra- or intraradical mycelium (if different
portions of the mycelium express functionally different ribo-
somes; Gilbert, 2011; Filipovska & Rackham, 2013), when con-
sidering the selection of different nucleotypes at the arbuscule
scale (Limpens & Geurts, 2014), or when other deterministic
processes occur (Verbruggen and Kiers 2010). At the other
extreme of phylogenetic depth, differences between biomes or
ecoregions could be clear at broad phylogenetic resolutions
(St€urmer et al., 2018b). Alternatively, a biogeographic structure
might be revealed at the ESV level in the case of dispersal limita-
tion of cryptic taxa and stochastic population-level processes (e.g.
genetic drift; Bruns & Taylor, 2015; Savary et al., 2018).

A phylogenetic decomposition of beta diversity may prove dif-
ficult using ITS, a genetic marker used by most molecular fungal
ecologists (Schoch et al., 2012), due to limitations in phylogeny
reconstruction. Clustering ESVs based on (morphology-based)
taxonomy (Cline et al., 2017) or using traditional clustering
methods (Lekberg et al., 2018) can alternatively be used to reveal
significant changes of community composition across environ-
mental gradients. Our sensitivity analysis showed both methods
can be used to assess change in community composition at differ-
ent phylogenetic resolutions. Finally, phylogenetic placement
methods, together with the recent release of improved phyloge-
nies for the entire fungal kingdom (e.g. Tedersoo et al., 2018)
will certainly anchor fungal molecular ecology using ITS into a
phylogenetic framework.

Conclusion

The establishment of an organism in a community is deter-
mined by a suite of processes, including ecological drift, disper-
sal, and abiotic and biotic selection. The interaction of these
processes imprints on the phylogenetic structure of communities
at multiple phylogenetic resolutions. We used this information
to identify at which phylogenetic resolution AM fungal commu-
nities covary with different environmental factors. We showed
that beta diversity patterns of AM fungi change with OTU phy-
logenetic resolution, so that one phylogenetic resolution gives
only partial information on the factors shaping their spatial dis-
tribution. We suggest that assessing beta diversity patterns at
varying OTU phylogenetic resolutions offers a deeper under-
standing of the ecology and evolution of fungi. Identifying eco-
logical variation among taxa of AM fungi at different
phylogenetic depths will ultimately help define functional
groups and serve as a guide for the engineering of AM fungal
communities (Rillig et al., 2016).
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