Haupttitel:
Modelling the distribution of health related quality of life of advancedmelanoma patients in a longitudinal multi-centre clinical trial using M-quantile random effects regression
Autor*in:
Borgoni, Riccardo; Bianco, Paola Del; Salvati, Nicola; Schmid, Timo; Tzavidis, Nikos
Datum der Freigabe:
2018-03-12T09:35:56.762Z
2019-08-16T08:37:13Z
Abstract:
Health-related quality of life assessment is important in the clinical
evaluation of patients with metastatic disease that may offer useful
information in understanding the clinical effectiveness of a treatment. To
assess if a set of explicative variables impacts on the health-related quality
of life, regression models are routinely adopted. However, the interest of
researchers may be focussed on modelling other parts (e.g. quantiles) of this
conditional distribution. In this paper, we present an approach based on
quantile and M-quantile regression to achieve this goal. We applied the
methodologies to a prospective, randomized, multi-centre clinical trial. In
order to take into account the hierarchical nature of the data we extended the
M-quantile regression model to a three-level random effects specification and
estimated it by maximum likelihood.
Teil des Identifiers:
ISSN (print): 1477-0334
ISSN (print): 0962-2802
Freie Schlagwörter:
Phase III study
Rotterdam Symptom Checklist
multilevel modelling
quantile regression
robust estimation
Hierarchical data
DDC-Klassifikation:
330 Wirtschaft
Publikationstyp:
Wissenschaftlicher Artikel
Auch erschienen in:
Statistical Methods in Medical Research 27 (2018), 2
Zeitschrift:
Statistical Methods in Medical Research
Fachbereich/Einrichtung:
Wirtschaftswissenschaft
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie