dc.contributor.author
Borgoni, Riccardo
dc.contributor.author
Bianco, Paola Del
dc.contributor.author
Salvati, Nicola
dc.contributor.author
Schmid, Timo
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2019-02-01
dc.date.accessioned
2019-08-16T08:37:13Z
dc.date.available
2018-03-12T09:35:56.762Z
dc.date.available
2019-08-16T08:37:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25303
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-4006
dc.description.abstract
Health-related quality of life assessment is important in the clinical
evaluation of patients with metastatic disease that may offer useful
information in understanding the clinical effectiveness of a treatment. To
assess if a set of explicative variables impacts on the health-related quality
of life, regression models are routinely adopted. However, the interest of
researchers may be focussed on modelling other parts (e.g. quantiles) of this
conditional distribution. In this paper, we present an approach based on
quantile and M-quantile regression to achieve this goal. We applied the
methodologies to a prospective, randomized, multi-centre clinical trial. In
order to take into account the hierarchical nature of the data we extended the
M-quantile regression model to a three-level random effects specification and
estimated it by maximum likelihood.
en
dc.format.extent
15 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Phase III study
en
dc.subject
Rotterdam Symptom Checklist
en
dc.subject
multilevel modelling
en
dc.subject
quantile regression
en
dc.subject
robust estimation
en
dc.subject
Hierarchical data
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.title
Modelling the distribution of health related quality of life of advancedmelanoma patients in a longitudinal multi-centre clinical trial using M-quantile random effects regression
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Statistical Methods in Medical Research 27 (2018), 2
dcterms.bibliographicCitation.doi
10.1177/0962280216636651
dcterms.bibliographicCitation.journaltitle
Statistical Methods in Medical Research
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
549
dcterms.bibliographicCitation.pageend
563
dcterms.bibliographicCitation.volume
27
dcterms.bibliographicCitation.url
http://doi.org/10.1177/0962280216636651
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.funding
Open Access Publikation in Allianzlizenz
refubium.mycore.fudocsId
FUDOCS_document_000000029282
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1477-0334
dcterms.isPartOf.issn
0962-2802