dc.contributor.author
Rebentrost, Patrick
dc.contributor.author
Steffens, Adrian
dc.contributor.author
Marvian, Iman
dc.contributor.author
Lloyd, Seth
dc.date.accessioned
2019-02-28T11:35:53Z
dc.date.available
2019-02-28T11:35:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23967
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1742
dc.description.abstract
We present a method to exponentiate nonsparse indefinite low-rank matrices on a quantum computer. Given access to the elements of the matrix, our method allows one to determine the singular values and their associated singular vectors in time exponentially faster in the dimension of the matrix than known classical algorithms. The method extends to non-Hermitian and nonsquare matrices via matrix embedding. Moreover, our method preserves the phase relations between the singular spaces allowing for efficient algorithms that require operating on the entire singular-value decomposition of a matrix. As an example of such an algorithm, we discuss the Procrustes problem of finding a closest isometry to a given matrix.
en
dc.subject
Quantum algorithms
en
dc.subject
Quantum Information
en
dc.subject.ddc
500 Natural sciences and mathematics::530 Physics::539 Modern physics
dc.title
Quantum singular-value decomposition of nonsparse low-rank matrices
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
012327
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.97.012327
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
97
dcterms.bibliographicCitation.url
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.012327
dcterms.rightsHolder.note
Copyright des Verlages
dcterms.rightsHolder.url
http://journals.aps.org/copyrightFAQ.html#post
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9934 (online)
dcterms.isPartOf.issn
2469-9926 (print)