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Quantum singular-value decomposition of nonsparse low-rank matrices
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We present a method to exponentiate nonsparse indefinite low-rank matrices on a quantum computer. Given
access to the elements of the matrix, our method allows one to determine the singular values and their associated
singular vectors in time exponentially faster in the dimension of the matrix than known classical algorithms. The
method extends to non-Hermitian and nonsquare matrices via matrix embedding. Moreover, our method preserves
the phase relations between the singular spaces allowing for efficient algorithms that require operating on the
entire singular-value decomposition of a matrix. As an example of such an algorithm, we discuss the Procrustes
problem of finding a closest isometry to a given matrix.
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I. INTRODUCTION

Matrix computations are central to many algorithms in
optimization and machine learning [1–3]. At the heart of these
algorithms regularly lies an eigenvalue or a singular-value
decomposition of a matrix, or a matrix inversion. Such tasks
could be performed efficiently via phase estimation on a
universal quantum computer [4], as long as the matrix can
be simulated (exponentiated) efficiently and controllably as a
Hamiltonian acting on a quantum state. Reference [5] paved
the way for such a simulation of quantum systems by intro-
ducing an efficient algorithm for exponentiating Hamiltonians
with tensor product structure—enabling applications such as
in quantum computing for quantum chemistry [6]. Step by
step, more general types of quantum systems were tackled
and performance was increased: Aharonov and Ta-Shma [7]
showed a method for simulating quantum systems described
by sparse Hamiltonians, while Childs et al. [8] demonstrated
the simulation of a quantum walk on a sparse graph. Berry
et al. [9] reduced the temporal scaling to approximately linear
via higher-order Suzuki integrators and further improvements
in the sparsity scaling were presented in Ref. [10]. Beyond
sparse Hamiltonians, quantum principal component analysis
(qPCA) was shown to be capable of efficiently handling non-
sparse positive-semidefinite low-rank Hamiltonians [11] given
multiple copies (or samples) of the Hamiltonian as a quantum
density matrix, as opposed to the requirement of quantum
oracles as in prior works. This method offers applications in
quantum process tomography and state discrimination [11],
as well as in quantum machine learning [12–18], specifically
in curve fitting [19] and support vector machines [20]. In
an oracular setting, Refs. [10,21,22] showed the simulation
of nonsparse Hamiltonians via discrete quantum walks. The
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scaling in terms of the simulated time t is t3/2 or even linear
in t .

In the spirit of Ref. [11], we provide an alternative method
for efficiently simulating nonsparse matrices in an oracular
setting that requires only one-sparse simulation techniques.
Compared to Ref. [11], the matrices are not restricted to
be positive semidefinite and the samples required are simple
uniform superpositions instead of the actual Hamiltonian. We
achieve a run time in terms of the matrix maximum element
and a t2 scaling, and discuss a class of low-rank matrices which
can be efficiently simulated.

In order to effectively treat a general non-Hermitian non-
quadratic matrix, we make use of an indefinite “extended
Hermitian matrix” that incorporates the original matrix. With
such an extended matrix, we are able to efficiently determine
the singular-value decomposition of dense nonsquare, low-
rank matrices. As one possible application of our method, we
discuss the Procrustes problem [1] of finding a closest isometric
matrix.

II. METHOD

We have been given an N × N dense (nonsparse) Hermitian
indefinite matrix A ∈ CN×N via efficient oracle access to the
elements of A. For the more general case of non-Hermitian
matrices, see Sec. V below. The oracle either performs an
efficient computation of the matrix elements or provides
access to a storage medium for the elements such as quantum
RAM [23,24]. Our method simulates e−i (A/N) t on an arbitrary
quantum state for arbitrary times t . Note that the eigenvalues of
A/N are bounded by ±‖A‖max, where ‖A‖max = maxmn |Amn|
denotes the maximal absolute value of the matrix elements of
A. This means that there exist matrices A for which the unitary
e−i (A/N) t can be far from the identity operator for a time of the
order of ‖A‖−1

max, i.e., an initial state can evolve to a perfectly
distinguishable state. For such times, the unitary e−i (A/N) t can
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be well approximated by a unitary generated by a low-rank
matrix.

Let σ and ρ be N -dimensional density matrices. The state
σ is the target state on which the matrix exponential of A/N is
applied, while multiple copies of ρ are used as ancillary states.
Our method embeds the N2 elements of A into a Hermitian
sparse matrix SA ∈ CN2×N2

, which we call “modified swap
matrix” because of its close relation to the usual swap matrix,
but with each column of SA containing a single element of A.
The modified swap matrix between the registers for a single
copy of ρ and σ is defined as

SA =
N∑

j,k=1

Ajk |k〉〈j | ⊗ |j 〉〈k| ∈ CN2×N2
. (1)

This matrix is one-sparse in a quadratically bigger space
and reduces to the usual swap matrix for Ajk = 1 and
j,k = 1, . . . ,N . Given efficient oracle access to the elements,
we can simulate a one-sparse matrix such as SA with a constant
number of oracle calls and negligible error [7–9,25]. We
discuss the oracle access below in Sec. IV. The resulting matrix
exponential of SA is applied to a tensor product of a uniform
superposition and an arbitrary state. Performing SA for small
�t leads to a reduced dynamics of σ when expanded to terms
of second order in �t as

tr1{e−i SA�t ρ ⊗ σ ei SA�t }
= σ−i tr1{SA ρ ⊗ σ }�t + i tr1{ρ ⊗ σ SA}�t + O(�t2).

(2)

Here, tr1 denotes the partial trace over the first register contain-
ingρ. The firstO(�t) term can be rewritten as tr1{SA ρ ⊗ σ } =∑N

j,k=1 Ajk〈j |ρ|k〉|j 〉〈k| σ. Choosing ρ = |�1〉〈�1|, with the uni-

form superposition |�1〉 := 1√
N

∑
k |k〉, leads to tr1{SA ρ ⊗

σ } = A
N

σ . This choice for ρ contrasts with the qPCA method,
where ρ is proportional to the simulated matrix [11]. Analo-
gously, the second O(�t) term becomes tr1{ρ ⊗ σ SA} = σ A

N
.

Thus, for small times, evolving with the modified swap matrix
SA on the bigger system is equivalent to evolving with A/N

on the σ subsystem,

tr1{e−i SA�t ρ ⊗ σ ei SA�t } = σ − i
�t

N
[A,σ ] + O(�t2)

≈ e−i A
N

�t σ ei A
N

�t . (3)

Let ε0 be the trace norm of the error termO(�t2). We can bound
this error by ε0 � 2 ‖A‖2

max �t2 (see the Appendix). Note that
‖A‖max coincides with the largest absolute eigenvalue of SA.
The operation in Eq. (3) can be performed multiple times in a
forward Euler fashion using multiple copies of ρ. For n steps,
the resulting error is ε = n ε0. The simulated time is t = n�t .
Hence, fixing ε and t ,

n = O

(
t2

ε
‖A‖2

max

)
(4)

steps are required to simulate e−i (A/N) t . The total run time of
our method is n TA: the number of steps n is multiplied with
the matrix oracle access time TA (see Sec. IV below).

We now discuss for which Hermitian matrices the al-
gorithm runs efficiently. At a simulation time t , only the

eigenvalues of A/N with |λj |/N = � (1/t) matter. Let the
number of these eigenvalues be r � N . Thus, effectively,
a matrix Ar/N is simulated for which the following lower
bound holds: tr{A2

r /N
2} = ∑r

j=1 λ2
j /N

2 = �(r/t2). It also
holds that tr{A2

r /N
2} � tr{A2/N2} = ‖A‖2

F /N2 � ‖A‖2
max,

with ‖A‖F the Frobenius norm of A. Combining the upper
and the lower bounds, we find that the rank of the effectively
simulated matrix is r = O(‖A‖2

maxt
2).

For the algorithm to be efficient in terms of matrix oracle
calls, we require that the number of simulation steps n is
O(poly log N ). Let the desired error be 1/ε = O(poly log N ).
Assuming ‖A‖max = �(1), meaning a constant independent
of N , we have from Eq. (4) that we can only exponentiate
for a time t = O(poly log N ). For such times, only the large
eigenvalues of A/N with |λj |/N = �(1/poly log N ) matter.
Such eigenvalues appear if the matrix is dense enough, for
example, A/N has �(N ) nonzeros of size �(1/N) per row.
For the rank of the simulated matrix in this case, we find that
r = O(poly log N ), and thus effectively a low-rank matrix is
simulated. To summarize, we expect the method to work well
for low-rank matrices A that are dense with relatively small
matrix elements.

A large class of matrices satisfies these criteria. Draw a
random unitary matrix U ∈ CN×N from the Haar measure and
r suitable eigenvalues of size |λj | = �(N ) and multiply them
as U diagr (λj ) U † to construct A. Here, diagr (λj ) ∈ CN×N is
the diagonal matrix with the r eigenvalues on, e.g., the first r

diagonal entries and zero otherwise. The entries of a typical
random normalized vector have absolute size O(1/

√
N ), and

the entries of the outer product of such a vector with itself have
absolute matrix elements of size O(1/N). Each eigenvalue of
absolute size �(N ) is multiplied with such an outer product
and the r terms are summed up. Thus, a typical matrix element
of A will be of size O(

√
r) and ‖A‖max = O(r).

III. PHASE ESTIMATION

Phase estimation provides a gateway from unitary simu-
lation to many interesting applications. For the use in phase
estimation, we extend our method such that the matrix expo-
nentiation of A/N can be performed conditioned on additional
control qubits. With our method, the eigenvalues λj /N of A/N

can be both positive and negative. The modified swap operator
SA corresponding to a Hermitian matrix A with eigende-
composition A = ∑

j λj |uj 〉〈uj | is augmented as |1〉〈1| ⊗ SA,
which still is a one-sparse Hermitian operator. The result-
ing unitary e−i |1〉〈1|⊗SA�t = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ e−i SA�t is
efficiently simulatable. This operator is applied to a state
|c〉〈c| ⊗ ρ ⊗ σ , where |c〉 is an arbitrary control qubit state.
Sequential application of such controlled operations allows one
to use phase estimation in order to prepare the state [25],

|φ〉 = 1√∑
j |βj |2

∑
|λj |/N�ε

βj |uj 〉|λj/N〉, (5)

from an initial state |ψ〉|0 . . . 0〉 with O(
log(1/ε)�) con-
trol qubits forming an eigenvalue value register. Here,
βj := 〈uj |ψ〉 and ε is the accuracy for resolving the eigen-
values. To achieve this accuracy, phase estimation is run for
a total time t = O(1/ε). Thus, O(‖A‖2

max/ε
3) queries of the
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oracle forA are required, which is of the order ofO(poly log N )
under the low-rank assumption for A discussed above.

IV. MATRIX ORACLE AND RESOURCE REQUIREMENTS

To simulate the modified swap matrix SA, we employ the
methods developed in Refs. [8,9]. First, we assume quantum
oracle access to the original matrix A,

|j k〉|0 · · · 0〉 �→ |j k〉|Ajk〉. (6)

This operation can be provided by quantum random access
memory (qRAM) [23,24] using O(N2) storage space and
quantum switches for accessing the data in TA = O(log2 N )
operations. Alternatively, matrices whose elements are effi-
ciently computable have, by definition, TA = O(poly log N ).
The unitary operation for the simulation of the one-sparse
matrix SA with the sparse methods [8,9] can be simply
constructed from the oracle in Eq. (6) and is given by

|(j,k)〉|0 · · · 0〉 �→ |(j,k)〉|(k,j ),(SA)(k,j ),(j,k)〉. (7)

Here, we use (j,k) as the label for the row and the column
index of the modified swap matrix.

In the following, we will compare the required resources
with those of other methods for sparse and nonsparse matrices:
For a general N × N and s-sparse matrix, O(s N ) elements
need to be stored. In certain cases, the sparse matrix features
more structure and its elements can be computed efficiently
[9,25]. For nonsparse matrices and the qPCA method [11],
only multiple copies of the density matrix, as opposed to an
operation as in Eq. (6), are required for applications such as
state tomography. For machine learning via qPCA [11,20], the
density matrix is prepared from a classical source via quantum
RAM [23,24] and requires O(N2) storage. In comparison, the
requirements of the method in this work are, in principle, not
higher than these sparse and nonsparse methods, both in the
case of qRAM access and in the case when matrix elements
are computed instead of stored.

V. NONSQUARE MATRICES

Our method enables us to also effectively establish prop-
erties of general nonsquare low-rank matrices. To determine
the singular-value decomposition of a matrix A = U � V † ∈
CM×N with rank r , simulating the positive-semidefinite ma-
trices AA† and A†A via qPCA already yields the correct
singular values and vectors. However, essential information
is missing, leading to ambiguities in the singular vectors that
become evident when inserting diagonal matrices into the
singular-value decomposition of AA† that change the relative
phases of the singular vectors,

AA† = U�2U † = U�D†V † V D�U † =: ÂÂ†, (8)

with D := diag(e−iϑj ), and ϑj being arbitrary phases. If
Avj = σjuj for each j = 1, . . . ,r , then

Âvj = U�D†V †vj = σje
iϑj uj := σj ûj , (9)

which means there are different phase relations between left
and right singular vectors in Â from those in A. Although A

and Â still share the same singular values and even the same
singular vectors up to phase factors, ‖A − Â‖F will, in general

(with the exception of positive-semidefinite matrices, where
U = V ), not be zero or even be small: The matrix A cannot
be reproduced this way—a singular value decomposition is
more than a set of singular values and normalized singular
vectors. This affects all kinds of algorithms that require the
appropriate phase relations between each left singular vector
uj and the according right singular vector vj . Such applications
determine the best low-rank approximation of a matrix, the
signal processing algorithms discussed in Ref. [26], or the
nearest isometric matrix, related to the unitary Procrustes
problem, of a non-Hermitian matrix.

In order to overcome this issue, consider the “extended
matrix,”

Ã :=
[

0 A

A† 0

]
, (10)

which was introduced for singular-value computations in
Ref. [27] and, recently, in sparse quantum matrix inversion
in [25]. The nonzero eigenvalues of Ã correspond to {±σj },
with {σj } being the singular values of A for j = 1, . . . ,r . The
corresponding eigenvectors are proportional to (uj , ± vj ) ∈
CM+N (see the Appendix). The left and right singular vectors
of A can be extracted from the first M and last N entries,
respectively. Since Ã is Hermitian, its eigenvectors can be
assumed to be orthonormal: ‖(uj ,vj )‖2 = ‖uj‖2 + ‖vj‖2 =
1, and (uj ,vj ) · (uj ,−vj )† = ‖uj‖2 − ‖vj‖2 = 0, from which
follows that the norm of each of the subvectors uj and vj is
1/

√
2, independent of their respective lengths M and N . The

important point is that the eigenvectors of the extended matrix
preserve the correct phase relations between the left and right
singular vectors since (eiϑj uj ,vj ) is only an eigenvector of Ã

for the correct phase eiϑj = 1.
The requirements for our quantum algorithm can be satisfied

also for the extended matrix. For randomly sampled left and
right singular vectors, the matrix elements have maximal
size of O(

∑r
j=1 σj/

√
MN ), and thus σj = O(

√
MN). In

addition, an 1/(M + N ) factor arises in the simulation of
the extended matrix from the ancillary state ρ = |�1〉〈�1| as
before, which leads to the requirementσj = �(M + N ). These
two conditions for σj can be satisfied if the matrix A is not
too skewed, i.e., M = �(N ). In summary, by simulating the
corresponding Hermitian extended matrices, general complex
matrices of low rank can be simulated efficiently, yielding the
correct singular-value decomposition.

VI. PROCRUSTES PROBLEM

The unitary Procrustes problem is to find the unitary
matrix that most accurately transforms one matrix into another.
It appears in many fields, such as in image analysis and
statistics [1]. As an application for our method in the case
of nonsquare matrices, we will discuss the more general
Procrustes problem of finding the isometry W that most
accurately transforms a matrix B into a matrix C: Formally,
minimize ‖WB − C‖F among all isometries W ∈ CM×N ,
W †W = 1, with B ∈ CN×K and C ∈ CM×K , where M > N .
The problem is equivalent to the problem of finding the
nearest isometric matrix W ∈ CM×N to a matrix A ∈ CM×N by
taking A = CB†. Since our quantum algorithm is restricted to
low-rank matrices, let A = CB† be low rank with rank r and
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singular-value decomposition A = U � V † with U ∈ CM×r ,
� ∈ Rr×r , and V ∈ CN×r . The optimal solution to the Pro-
crustes problem is W = U V † [1], setting all singular values
to one, in both the low-rank and the full-rank situation. Since
A is assumed to be low rank, we find a partial isometry
with W †W = Pcol(V ), with Pcol(V ) being the projector into the
subspace spanned by the columns of V . Thus, W acts as an
isometry for vectors in that subspace (see the Appendix).

In a quantum algorithm, intrinsically consisting of quantum
operations acting on quantum states, let the task be to apply
the nearest low-rank isometry to a quantum state |ψ〉. The state
|ψ〉 is assumed to be in or close to the subspace spanned by
the columns of V . We assume that the extended matrix for
A in Eq. (10) is given in oracular form and that A is not too
skewed such that σj/(M + N ) = �(1) and ‖A‖max = �(1).
We perform phase estimation on the input state |0,ψ〉|0 . . . 0〉
and, analogous to Eq. (5), obtain a state proportional to

∑
σj

M+N
�ε

β±
j |uj ,±vj 〉

∣∣∣∣ ± σj

M + N

〉
, (11)

with β±
j = 〈uj ,±vj |0,ψ〉 = ±〈vj |ψ〉/√2. The sum has 2 r

terms corresponding to the eigenvalues of the extended matrix
with absolute value greater than (M + N ) ε. Performing a σz

operation on the qubit encoding the sign of the respective eigen-
value and uncomputing the eigenvalue register yields a state
proportional to

∑
j βj |uj ,±vj 〉. Projecting onto the uj part

(with success probability 1/2) results in a state proportional to∑
σj

M+N
�ε

|uj 〉〈vj |ψ〉 ∝ U V †|ψ〉. (12)

This procedure leads to the preparation of the desired state for
the nonsquare low-rank Procrustes problem with accuracy ε in
runtime O[‖A‖2

max log2(N + M)/ε3]. In contrast, performing
the singular-value decomposition of a low-rank A classically
requires, in general, without further structural assumptions, a
runtime O(N3).

VII. CONCLUSION

The method presented here allows nonsparse low-rank non-
positive Hermitian N × N matrices A/N to be exponentiated
for a time t with accuracy ε in runtime O( t2

ε
‖A‖2

max TA),
where ‖A‖max is the maximal absolute element of A and TA

is the data-access time. If the matrix elements are accessed
via quantum RAM or computed efficiently and the significant
eigenvalues of A are �(N ), our method can achieve a runtime
of O(poly log N ) for a large class of matrices. Our method
allows non-Hermitian and nonsquare matrices to be exponen-
tiated via extended Hermitian matrices.

We have shown how to compute the singular-value decom-
position of a non-Hermitian nonsparse matrix on a quantum
computer directly while keeping the relative phase informa-
tion. The numerous potential applications of the quantum
singular-value decomposition include determining the pseu-
doinverse of a matrix or its closest isometry exponentially
faster than any known classical algorithm. In addition, the
present method has been modified to a continuous-variable
setting as a subroutine for Gaussian process regression [28].

In addition, by using a (possibly unknown) ancillary state
different from the uniform superposition, the oracular setting
of the present work and the tomography setting of Ref. [11]
can be combined.
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APPENDIX

1. Norms

Denote the maximum absolute element of a matrix A ∈
CN×N with ‖A‖max = maxj,k |Ajk|. The Frobenius or Hilbert-

Schmidt norm is given by ‖A‖F =
√∑

j,k |Ajk|2 and its

nuclear norm by ‖A‖∗ = ∑r
i=1 σi, where r is the rank and

σj are the singular values.

2. Modified swap matrix

The modified swap matrix is defined as

SA =
N∑

j,k=1

Ajk|k〉〈j | ⊗ |j 〉〈k| ∈ CN2×N2
. (A1)

Taking Ajk = 1 leads to the original swap matrix S =∑N
j,k=1 |k〉〈j | ⊗ |j 〉〈k| ∈ CN2×N2

. The N2 eigenvalues of SA

are

A11,A22, . . . ,ANN,A12,−A12, . . . ,Aj,k>j ,−Aj,k>j , . . . ,

(A2)

where k > j denotes an index k greater than j . The maximal
absolute eigenvalue of SA is thus maxj,k |Ajk| ≡ ‖A‖max,
corresponding to the maximal absolute matrix element of A.
The square of the modified swap matrix is

(SA)2 =
N∑

j,k=1

|Ajk|2 |k〉〈k| ⊗ |j 〉〈j | � ‖A‖2
max 1. (A3)

Its eigenvalues are |Ajk|2 and the maximal eigenvalue is
‖A‖2

max. This already points to the result that the second-order
error of our method naturally scales with ‖A‖2

max, which we
will now derive.

3. Error analysis

In the following, we will estimate the error from the second-
order term in �t in Eq. (2). The nuclear norm of the operator
part of the second-order error is

ερ,σ = ‖tr1{SA ρ ⊗ σ SA} − 1
2 tr1{(SA)2 ρ ⊗ σ }

− 1

2
tr1{ρ ⊗ σ (SA)2}‖∗. (A4)

In Ref. [11], this error was equal to ε
qPCA
ρ,σ = ‖ρ − σ‖∗ � 2,

which is achieved in the present algorithm by choosing A such
that Ajk = 1 for each j,k. Here, our algorithm coincides with
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the qPCA method for ρ chosen as the uniform superposition.
For general low-rank A, we bound Eq. (A4) via the triangle
inequality. Taking the nuclear norm of the first term results in

‖tr1{SAρ ⊗ σSA}‖∗ � ‖SAρ ⊗ σSA‖∗
� ‖ρ ⊗ σ‖∗

∥∥S2
A

∥∥
∗ � ‖A‖2

max. (A5)

The second and third term can be treated similarly. We obtain
‖tr1{(SA)2ρ ⊗ σ }‖∗ � ‖A‖2

max. Combining all terms yields the
bound

ερ,σ � 2‖A‖2
max. (A6)

4. Extended matrices

We define the Hermitian extended matrix Ã of a general
complex-valued, not necessarily square matrix A ∈ CM×N as

Ã =
[

0 A

A† 0

]
∈ C(M+N) × (M+N). (A7)

Using block matrix identities for the determinant, we obtain
its characteristic polynomial,

χÃ(λ) = λ|M−N | det (λ1 +
√

AA†)(λ1 −
√

AA†). (A8)

The eigenvalues of Ã are either zero or correspond to {±σj }, the
singular values of A for j = 1, . . . ,r with an additional sign.
Hence, if A has low-rank r , then Ã has low-rank 2 r . The corre-
sponding eigenvectors are proportional to (uj ,±vj ) ∈ CM+N

since [∓σj1 A

A† ∓σj1

]
·
[

uj

±vj

]
= 0, (A9)

where uj and vj are the j th left and right singular vector of A,
respectively. The important point is that the eigenvectors of the

extended matrix preserve the correct phase relations between
the left and right singular vectors since (eiϑj uj ,±vj ) is only an
eigenvector of Ã for the correct phase eiϑj = 1,[∓σj1 A

A† ∓σj1

]
·
[
eiϑj uj

±vj

]
=

[
∓σje

iϑj uj ± Avj

eiϑj A†uj − σjvj

]

= (eiϑj − 1)σj

[∓uj

vj

]
.

(A10)

The right-hand side is only equal to zero for the correct phase
eiϑj = 1.

5. Low-rank Procrustes

Let the isometry be W = U V † with U ∈ CM×r and V ∈
CN×r . Assume that M > N , leading to orthogonal columns
in the full-rank Procrustes problem (r = N ). We find for the
low-rank (partial) isometry that

W †W = V U †UV † = V V † =
r∑

j=1

�vj �v†
j . (A11)

Pick an arbitrary vector �x = ∑r
j=1 αj �vj + �x⊥ = �x‖ + �x⊥,

where �x⊥ denotes the part orthogonal to the orthonormal
vectors �vj . Then,

W †W �x =
r∑

j=1

αj �vj = �x‖. (A12)

Thus, W †W acts as the identity operator in the low-rank
subspace and projects out the space perpendicular to that
subspace.
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