The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties including correlation functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice, and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7, which realize an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations, which are both relevant for Pr2Ir2O7. Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi arcs although only the one-in-three-out configuration features bulk Weyl nodes in realistic parameter regimes. Our approach generalizes to symmetry protected phases, e.g., quantum spin Hall systems and Dirac semimetals with time-reversal symmetry, and can furthermore signal the absence of topological surface states, which we illustrate for a class of models akin to the trivial surface of Hourglass materials KHgX where the exact solutions apply but, independently of Hamiltonian details, yield eigenstates delocalized over the entire sample.