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The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the
one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming
open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite
the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the
detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this
work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained
for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the
need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive
interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into
the structure of the surface states that enable analytical calculation of many desired properties including correlation
functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily
occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-
boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial
dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice,
and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7, which realize
an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations,
which are both relevant for Pr2Ir2O7. Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi
arcs although only the one-in-three-out configuration features bulk Weyl nodes in realistic parameter regimes.
Our approach generalizes to symmetry protected phases, e.g., quantum spin Hall systems and Dirac semimetals
with time-reversal symmetry, and can furthermore signal the absence of topological surface states, which we
illustrate for a class of models akin to the trivial surface of Hourglass materials KHgX where the exact solutions
apply but, independently of Hamiltonian details, yield eigenstates delocalized over the entire sample.
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I. INTRODUCTION

The experimental discovery of the quantum Hall effect
in 1980 [1] decisively put topological phases in the lime-
light, and especially during the past decade the interplay
between theoretical ideas and experimental advances has led to
spectacular developments with intriguing prospects for future
technological applications [2–5]. Most early work focused
on topological insulators [2,3], the most basic of which are
simple two-dimensional lattice generalizations of the quantum
Hall states, namely Chern insulators [6–10], while quantum
spin Hall insulators stem from two time-reversed copies
thereof [11,12]. Weyl semimetals, experimentally realized
in 2015 [13–16], are paradigmatic examples of a gapless
topological phase existing in three dimensions [17–20], whose
time-reversal invariant cousins, the Dirac semimetals, were
unraveled in 2014 [21,22].

What makes these topological phases so intriguing is
their robust and novel boundary states. Despite their central
importance, and the simplicity of their bulk description,
explicit solutions for the boundary states of topological phases
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are only known in a very limited number of special cases
[23–31]. While powerful transfer matrix methods, which
in some special cases allow analytical progress, have been
developed [32–34], there is a glaring absence of generic
analytical solutions that do not require fine-tuning, that are
valid in any dimension, in the entire surface Brillouin zone, at
finite size, and without the need for approximations.

In this work, we devise a general strategy for finding exact
surface state solutions for trivial as well as for topological
phases in any dimension, notably including Chern insulators
and Weyl semimetals as well as their time-reversal invariant
counter parts in quantum spin Hall insulators and Dirac
semimetals. Rather than stemming from fine-tuning of hopping
amplitudes our method is rooted in the underlying lattice
structure. The lattices we consider can be seen as composed
by (d − 1)-dimensional layers of different variety, referred to
as A and B lattices, that are stacked on top of each other in an
alternating fashion such that the full d-dimensional lattice is
geometrically frustrated (Fig. 1). Prominent examples of this
type are kagome lattices in d = 2 and pyrochlore in d = 3.

Frustrated lattices are usually studied in the context of
magnetism and lead to rich physics while being notoriously
difficult to understand even at a qualitative level [35]. In glaring
contrast, we find that frustration greatly simplifies the study
of surface states of both trivial and topological variety. Under
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FIG. 1. Schematic figures to illustrate conditions (i)–(v). (a) The periodic, (d − 1)-dimensional A and B lattices are shown in red and
green, respectively. They are stacked such that condition (i) is fulfilled. (b) Schematic figure of which hoppings between the A and B lattices
are allowed to fulfill condition (ii). Allowed hoppings are shown with arrows, and forbidden hoppings are indicated by crossed-out, dashed
arrows. (c) The A and B lattices are shown in red and green, respectively, and the black lines indicate the hoppings between them. The lattices
are coupled in a geometrically frustrated fashion, condition (iii). (d) Schematic figure of the frustrated lattice models with the minimal unit cell
of the A lattice indicated by a blue ellipse. The unit cell is chosen to be the same for each A lattice. The hopping constraint to the intermediate
site involves a nontrivial connection between unit cells fulfilling condition (iv). (e) Condition (v) states that the bulk Hamiltonian must support
a topological phase, here symbolized by a torus.

very general conditions, we find exact eigenstates of the form

|�(k)〉 = N (k)
N⊕

m=1

(r(k))m|�(k)〉m, (1)

where k is the (d − 1)-dimensional quasimomentum parallel to
the surface, |�(k)〉m is a Bloch state of the mth A lattice layer in
a system composed of N such layers and N − 1 intermediate
B lattice layers, and r(k) is a simple function determined
by the local connectivity between neighboring layers and the
Bloch states of the individual A layers. A salient feature of (1)
is the vanishing amplitudes on the B lattice layers, which is
directly related to how the exact solutions are found: assuming
vanishing amplitudes on the B lattices puts constraints on
r(k) and provides a bootstrapping procedure uniquely leading
to (1). The existence of these solutions hinges only on the
counting of local constraints in combination with locality and
translation invariance, and as such is insensitive to Hamiltonian
details. In this context we stress that the local constraints are
not a feature of the Hamiltonian but rather an emergent exact
property of the eigenstates in Eq. (1), which is, however, not
fulfilled for any other eigenstate. It is also noticeable that the
exact solutions are for the full tight-binding model and thus
extend in the full (d − 1)-dimensional surface Brillouin zone
and thereby also describe the attachment to bulk bands as the
states switch surface. Moreover, the solutions remain exact at
any finite size, i.e., for any number of layers, N .

Our approach is akin to the construction of flat band
models arising due to local constraints on “line graphs” such
as kagome and pyrochlore lattices (see, e.g., Ref. [36]). In
contrast to our setup, these models require precise fine-tuning

of the hopping amplitudes, typically allowing real and strictly
nearest-neighbor hopping only. A second key difference is that
the flat bands studied earlier are d-dimensional bulk bands
while our solutions provide a (d − 1)-dimensional manifold
corresponding to the surface Brillouin zone. A similarity
is, however, that band touchings necessarily occur in both
setups.

Expanding on the seminal work by Mielke [37], a large
body of work, including effects of interactions and disorder
on line graphs, has accumulated during the past 25 years.
In this context, valuable insights have been obtained for
antiferromagnetic Heisenberg models on frustrated lattices
with a flat band corresponding to a localized magnons [38–41]
as well as on flat-band Hubbard models [42,43]. Alongside
the extensive literature on theory (see also Refs. [37,44–49]),
intriguing recent experiments [50,51] have underscored the
value of these works.

It is conceivable that a similar progress on topological (and
trivial) surface states can be spurred by the present work.
Indeed, earlier work by two of us exploring Eq. (1) in the
special case of {111}-oriented slabs of the pyrochlore lattice
[52,53] has already borne fruit: for thin slabs this provided
a natural platform for nearly flat bands with higher Chern
numbers [53] and led to the subsequent discovery of an
entire zoo of novel fractional Chern insulators qualitatively
different from their quantum Hall relatives [52,54,55]. For
thicker slabs, we discovered that Fermi arcs can in fact persist
without Weyl nodes in the bulk—and that when Weyl nodes do
occur their dispersion is generally both anisotropic and tilted
[52,56]. In particular, the tilting can easily be so strong that
the Weyl cones become “over-tilted” forming a compensated
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metal where the Weyl point is a singular point connecting two
Fermi pockets [52]. These systems were later popularly coined
type-II Weyl semimetals [57] and subsequently experimentally
identified in a growing list of intriguing materials [58–65].
The phenomenon of Fermi arcs without the presence of Weyl
nodes has been corroborated by recent experimental findings
[66,67].

Building on our previous work, we here explore the
connection between frustration and surface topology in much
more detail and generality whereby we derive a number of
generic results regarding correlation functions, surface dis-
persion, Berry curvature, energy gaps, and the bulk-boundary
correspondence. While we mostly focus on two- and three-
dimensional examples our results apply mutatis mutandis to
any dimension. We also refine the earlier analysis of pyrochlore
slabs to relate more directly to experiments on pyrochlore
iridates. In particular, this makes contact to beautiful recent
experimental progress in growing (thin) single-crystal slabs of
the pyrochlore iridates Eu2Ir2O7 [68] and Nd2Ir2O7 [69]—two
materials that both exhibit an all-in-all-out spin ordering and
that we conclude are likely to have Fermi-arc-like surface
states without possessing Weyl nodes in the bulk. For the yet to
be grown slabs of Pr2Ir2O7, we, however, find that Weyl nodes
exist depending on the particular spin ordering [70], which is
either spin-ice-like two-in-two-out and one-in-three-out, while
Fermi arcs exist in either configuration.

This work is structured as follows. In Sec. II, we introduce
a generic recipe for constructing our models and present the
exact solutions and consequences thereof in general terms.
In Sec. III, we illustrate the effectiveness of our recipe
with a number of examples. In Sec. III A, we introduce a
one-dimensional chain, and analyze the exact expressions for
its end modes. In Sec. III B, we focus on two dimensions
and derive exact edge state solutions on the kagome lattice
including the chiral edge states occurring when the system
is a Chern insulator. We also discuss the connection between
the local lattice structure and topology. In Secs. III C–III E,
we investigate the surface states of three-dimensional lattice
models, most saliently obtaining exact solutions for the Fermi
arcs of Weyl semimetals. Throughout this exposition, we
comment on the relevance of our solutions for naturally
existing, synthesized and artificial materials. We conclude with
a discussion in Sec. IV.

II. SETUP AND GENERAL CONSIDERATIONS

In this section, we introduce five conditions—illustrated in
Fig. 1 and detailed below—which, when they are fulfilled,
allow us to find a (d − 1)-dimensional manifold of exact
wave functions and energies corresponding to the topological
surface theory of a given d-dimensional topological phase.
After detailing the general setup, we describe a number of
results that can be derived directly from the exact surface state
solutions.

A. Lattice structure

We study d-dimensional models with periodic boundary
conditions in (d − 1) dimensions while they are left open in
the remaining dimension giving the possibility of surface state

solutions. More precisely, we consider models that can be
decomposed in terms of alternating layers of two different
(d − 1)-dimensional periodic lattices; a lattice with n degrees
of freedom (A lattice) and a lattice with n′ degrees of freedom
(B lattice) such that the surfaces of the material are formed by
A lattices as shown schematically in Fig. 1(a), which we refer
to as condition (i). In this work, for the sake of transparency,
we mostly consider examples in which the degrees of freedom
equal the number of sites in the unit A lattice cells, there is
one available state per site. Note, however, that our results
can readily be generalized to include more degrees of freedom
which is necessary for instance for time-reversal symmetric
models including onsite spin degrees of freedom.

The key assumption is that the A lattices are only connected
to each other via the intermediate B lattices, and hence that
direct hopping between different A lattices is prohibited as
shown in Fig. 1(b). We refer to this as condition (ii). This
is a realistic scenario, because it is unlikely that the orbitals
of electrons sitting on different A lattices will overlap. Upon
solving the Schrödinger equation, we find precisely n exact
solutions to the wave function, which have total-zero weight
on the intermediate-lattice sites if the layers are connected such
that the full model is geometrically frustrated, condition (iii),
as shown schematically in Fig. 1(c). This is due to geometric
frustration, which allows the hoppings from the A lattices
to the intermediate B lattice to interfere out. We refer to
this interference as the local hopping constraint, and wave
functions obeying this constraint can always be found when
the lattice satisfies conditions (ii) and (iii). This shows that the
connection of the A lattices via the intermediate B lattices is
essential for our problem. Hopping within the A and within
the B lattices is allowed and will be elaborated upon in the
next section.

We distinguish two types of connectivity in this stacking
construction. In the first, the intermediate sites on the B

lattice are connected to sites in the minimal unit cells on both
neighboring A lattices in a symmetric way. In the second case,
the intermediate sites on the B lattice are connected differently
to the sites in the minimal unit cells of the A lattice below
than to the sites in the unit cells in the A lattice above, as
shown in the bottom panel of Fig. 1(d). In either case, there
is a natural constraint—zero total hopping amplitude to the
B lattice sites—that leads to a bootstrapping procedure and
exact eigenstates that can be expressed entirely in terms of
the Bloch eigenstates of the A lattice layers. In the symmetric
case, the solutions are rather mundane with |r(k)| = 1, while
the latter case, where the local constraint necessarily connects
multiple minimal unit cells, gives more interesting solutions
for r(k) including those that correspond to topological surface
states. The latter situation is referred to as condition (iv). Note
that in this discussion we have assumed that the coupling
strength between the intermediate B lattice and the degrees
of freedom in the unit cell of the A lattice above and equals
the coupling strength between the intermediate B lattice and
the degrees of freedom in the unit cell of the A lattice below.
We refer to this as the isotropic case. If this coupling were
anisotropic, we can find nontrivial solutions for |r(k)|, which
depend on both the crystal momentum k and the strength of
the various perpendicular hopping parameters, regardless of
whether the local constraint involves multiple unit cells. If
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we now include pertinent terms in the Hamiltonian such that
the system indeed supports a topological phase, as shown in
Fig. 1(e), we find that our wave-function solutions describe a
topological boundary state. This final condition is referred to as
condition (v).

We can thus list five conditions that need to be fulfilled to
find topological boundary states.

(i) The lattices are formed by alternating (d − 1)-
dimensional lattices, referred to as A and B lattices, which
have periodic boundary conditions. There are open boundary
conditions in the direction of stacking and the outermost layers
are A lattices [Fig. 1(a)].

(ii) The A lattices are only coupled to each other via
intermediate B lattices and cannot directly communicate
[Fig. 1(b)].

(iii) The A and B lattices are connected in a geometrically
frustrated fashion meaning that there are several inequivalent
ways of hopping from the neighboring A lattices to the single
orbital in the B lattice unit cell leading, together with (ii), to the
emergence of a local constraint obeyed by the exact solutions
in Eq. (1) [Fig. 1(c)]. (In the presence of pertinent symmetries,
this can be generalized to several orbitals in the B lattice unit
cell.)

(iv) There is no way of choosing a minimal unit cell such
that the local constraint obeyed by the exact solutions in Eq. (1)
takes place within a single unit cell on both of the involved A

lattices [Fig. 1(d)]. Alternatively, this condition can be satisfied
if the coupling between the A and B lattices is anisotropic.

(v) The bulk Hamiltonian supports the pertinent topologi-
cal phase [Fig. 1(e)].
Exact wave-function solutions corresponding to n (d − 1)-
dimensional bands can be found whenever conditions (i)–
(iii) are fulfilled. Fulfilling condition (iv), the exact solution
generically yields exponentially localized boundary states,
and whenever the bulk supports a given topological phase,
condition (v), the exact solution corresponds to its surface
theory.

B. Generic tight-binding models

We consider tight-binding models describing noninteract-
ing identical particles on the lattices described above. For the
sake of clarity we set n′ = 1, i.e., we consider intermediate
B lattices with a single degree of freedom per unit cell. The
Hamiltonian describing a system with N stacked A lattices
is written directly in momentum space and reads HN (k) =
�†(k)HN

k �(k) with �(k) = ⊕l
s=1 ψs(k), l ≡ (n + 1)N − 1,

the annihilation operator of an electron in the full lattice, and
HN

k an ((n + 1)N − 1) × ((n + 1)N − 1)-dimensional matrix
given by

HN
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hk HA
⊥ 0 0 0 0 0

H†,A
⊥ hk H†,B

⊥ 0 0 0 0
0 HB

⊥ Hk HA
⊥ 0 0 0

0 0 H†,A
⊥ hk H†,B

⊥ 0 0
0 0 0 HB

⊥ Hk . . . 0

0 0 0 0
...

. . . H†,B
⊥

0 0 0 0 0 HB
⊥ Hk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2)

where Hk is the (n × n)-dimensional Hamiltonian for the
A lattice, hk is the (1 × 1)-dimensional Hamiltonian for the
intermediate B lattice, and Hα

⊥ is an (n × 1) matrix connecting
the A lattice to the intermediate B lattice. In general, this
connecting Hamiltonian can be written as

Hα
⊥ =

n⊕
s=1

t⊥,α,s fα,s(k), (3)

where t⊥,α,s is the hopping amplitude from site s in the unit
cell of the A lattice to the intermediate B lattice, and fα,s(k)
is a k-dependent phase derived from the local lattice structure.
Note that all hopping amplitudes are allowed to be complex,
i.e., allowing for spin-orbit coupling as well as commensurate
magnetic fields incorporated via Peierls substitution.

C. Exact eigenstates

Using the Hamiltonian in Eq. (2), we find a subset
of solutions to the Schrödinger equation, HN

k |�i(k)〉 =
EN

i (k)|�i(k)〉, i = 1,2, . . . ,n, corresponding to the number
of degrees of freedom in the A lattice, given by

EN
i (k) = Ei(k), (4)

|�i(k)〉 = Ni(k)
N⊕

m=1

(ri(k))m|�i(k)〉m, (5)

where Ei(k) are the eigenvalues of the A lattice Hamiltonian
Hk and �i(k) the eigenstates with components φi,s(k), s =
1, . . ,n, thereof, k is the (d − 1)-dimensional momentum,

Ni(k) = 1

|ri(k)|

√
|ri(k)|2 − 1

(|ri(k)|2)N − 1
, (6)

ensures normalization,1 m labels the A lattice layer, and ri(k)
is a prefactor given by

ri(k) = − ψi,m,s(k)

ψi,m+1,s(k)
, ∀ s ∈ {1 · · · n}, m ∈ {1 · · · N −1},

(7)

where ψi,m,s are the components of �i(k) in the mth A lattice
on sublattice site s. Using that the weight of the wave function
on the intermediate site of the B lattice is zero, ri(k) can also
be expressed in terms of the components of �i(k):

ri(k) = −H†,A
⊥ �i(k)

H†,B
⊥ �i(k)

= −
∑n

s=1 t⊥,A,sf
†
A,s(k)φi,s(k)∑n

s=1 t⊥,B,sf
†
B,s(k)φi,s(k)

, (8)

where fα,s(k) is given in Eq. (3). From this equation, we
can formalize condition (iv): this condition is fulfilled when
|ri(k)| �= 1, i.e., t⊥,A,sfA,s �= t⊥,B,sfB,s , and broken when
|ri(k)| = 1, i.e., t⊥,A,sfA,s = t⊥,B,sfB,s . Note that explic-
itly calculating |ri(k)|, one can still find |ri(k)| = 1 when
t⊥,A,sfA,s �= t⊥,B,sfB,s . This is due to the explicit form of
φi,s(k) and closely related to topology in the model, condition

1As |r(k)| → 1, the normalization factor is smooth approaching
N (k) = 1/

√
N .
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(v), which is further discussed towards the end of this section.
We want to emphasize that the exact solution is completely
independent of the Hamiltonian hk on the intermediate B

lattice. It should, however, be mentioned that the remaining
((n + 1)N − (n + 1)) solutions to the Schrödinger equation,
which are only numerically accessible, do depend on this
Hamiltonian and are subject to deformation by changing the
perpendicular hopping strength.

Inspecting the solution in Eq. (5), we notice three properties.
First, the solution has zero weight on the intermediate sites,
which means that the Hamiltonian hk for the intermediate
B lattice is completely irrelevant to the solution and as
such can generally include arbitrary terms. Second, only the
connectivity of the A lattices via the intermediate B lattices
encoded by t⊥,α,sfα,s(k) is relevant. The coupling between A

lattices may differ in strength effectively yielding strongly
or weakly coupled layers. Third, we can now understand
why satisfying condition (iv) leads to boundary states. If
|ri(k)| = 1, the weight of the wave function on layer m,

Pi,m(k) = |Ni(k)|2|ri(k)|2m, (9)

is the same for all m, and the wave function is equally
localized on each A lattice. However, if |ri(k)| �= 1, the
eigenstate will localize to one of the boundaries. If |ri(k)| < 1,
Pi,m(k) decreases with increasing m and the wave function is
strongly localized on the first layer m = 1 corresponding to the
surface on one side. When |ri(k)| > 1, Pi,m(k) increases with
increasing m and the state is localized on the last layer m = N

corresponding to the surface on the other side. Therefore, when
|ri(k)| �= 1, we have exponentially localized boundary states
with a localization length, and the solution in Eq. (5) thus
corresponds to the solution for the boundary state. Now, if
|ri(k)| also has a k-dependent structure the boundary state
can switch surfaces, which for a three-dimensional material
means a constant energy contour represents a Fermi arc. When
discussing the exponential surface localization we will make
use of the localization length ξi(k) = (ln |ri(k)|)−1.

Satisfying condition (iv) means we have found a suitable
geometry for the lattices to find boundary states. However,
when one plugs the solution to the eigenfunctions into
Eq. (8), we may still find |ri(k)| = 1 for systems deep in the
topologically trivial regime. In the trivial regime, it is also
possible to find unprotected, weakly-localized boundary states
for which |ri(k)| has a nontrivial structure. Therefore we need
to impose a fifth condition, condition (v), that introduces
nontrivial topology in the models such that we for instance
obtain a Chern insulator and Weyl semimetal, which are
examples of two- and three-dimensional models, respectively.
One needs to minimally break time-reversal symmetry to find a
Chern insulator, such that in two dimensions, the Hamiltonian
should include at least one such term. To obtain a Weyl
semimetal, one could either break inversion or time-reversal
symmetry. In the cases studied in this work, we break the latter
symmetry by turning the A lattice into a Chern insulator. In
Sec. II E, we present an argument to understand why this leads
to an eigenstate that switches surfaces.

It is worth emphasizing that the exact wave-function solu-
tion directly enables the computation of correlation functions
within the surface bands which are otherwise only numerically
or approximately tractable. For example, the expectation

value of any operator A, which acts the same within each
layer, reads 〈A〉 = |N (k)|2 ∑N

m=1 |ri(k)|2m〈�i(k)|A|�i(k)〉.
This expression can readily be extended to more complicated,
layer dependent, operators.

Diagonalizing the Hamiltonian in Eq. (2) leads to the band
spectrum of the full system with ((n + 1)N − 1) bands, which
are divided into (n + 1)-bulk parts separated by band gaps.
When conditions (i)–(v) are met, boundary states are present,
which can be identified in the bulk spectrum as bands crossing
a gap and connecting two bulk parts.

It should be noted that, while the exact solutions remain
unchanged, all other eigenstates change while deforming the
coupling to the B lattices. For instance, as we will demonstrate
in Sec. III, increasing the interlayer coupling strength drives
a transition between the quasi-two-dimensional layered Chern
insulators phase and a truly three-dimensional Weyl semimetal
regime.

D. Attachment of bulk bands and surface switching

It is a generic property of our exact solutions that in part
of the surface Brillouin zone they attach to bulk bands in
the limit of many stacked layers. This happens precisely at
those points q in the (d − 1)-dimensional (surface) Brillouin
zone where the boundary state connects to the bulk where
|r(q)| = 1, i.e., where the penetration depth ξ diverges. Below
we will provide a variational argument that shows that the
gap—either from below or from above—vanishes as N−2 for
large N . In contrast, whenever the penetration is finite there is
a gap to neighboring bands also in the limit N → ∞.

There are two types of penetration depth divergences and
concomitant bulk band attachments. First, at q = 0, it imme-
diately follows that |r(q = 0)| = 1 independently of model
details. Second, many models feature (d − 2)-dimensional
families of such q points, typically along high symmetry paths
cutting through the surface Brillouin zone. The existence of
these motifs depend on details of the lattice geometry and
the tight-binding Hamiltonian. In particular, the boundary
states may switch surfaces at q, i.e., sign[ln|ri(q − εk)|] �=
sign[ln|ri(q + εk)|] as ε → 0. Notably, (d − 2)-dimensional
families of such q points necessarily exist for topologically
nontrivial models although they can also occur in topologically
trivial models.

It is intuitively plausible that the energy gap between the
boundary states and the bulk bands at the points q should
disappear. We can explicitly demonstrate that this is indeed the
case by introducing a class of ansatz wave functions describing
bulk state with nearly the same energy as the exact solution
|r(q)| = 1. In this case, the exact solution to the low-energy
boundary state can be written as

|ψ(q)〉 = 1√
N

N⊕
m=1

eiα(q)m|φ(q)〉m. (10)

We can now make an ansatz for a class of states expected to
be close in energy,

|χ0(q)〉 = 1√
N

N⊕
m=1

eiα̃(q)m|φ(q)〉m, (11)
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which has to be orthogonal to the exact solution in Eq. (10),
such that we find

α(q) − α̃(q) = 2π

N
p, p = 1,2, . . . ,N − 1. (12)

This leads to

eiα̃(q)m = ei(α(q)−2πp/N)m. (13)

However, the trial wave function in Eq. (11) is not an
eigenfunction of the Hamiltonian because it has zero weight
on the intermediate site of the B lattice, which it should not
have.

Therefore the trial wave function can be made an eigenstate
by mixing in the state for the intermediate site |χ̃(q)〉, which
results in altering the entries given in |φ(q)〉, such that we can
create an approximate eigenstate, which becomes exact in the
limit of large N:

|χ (q)〉 = 1√
N

N⊕
m=1

eiα̃(q)m|φ(q)〉m + 1√
N

N⊕
m=1

am|χ̃(q)〉m,

(14)
where

am ∼ − t⊥ p

N
. (15)

Therefore we find that the energy difference between the two
states behaves as

� ∼ − t2
⊥p2 + O(t4

⊥)

N2
(16)

for large N . Therefore the energy difference between the exact
solution and our variational bulk state disappears as N−2 at
k = q for large N . In fact, there will be many such states as
signaled by the family of states constructed (varying p). Note,
however, that depending on details, in particular the strength
of the interlayer tunneling t⊥, the variational state may be
lower or higher in energy. For weak t⊥, the variational state
is always lower in energy than the exact solution. However,
for stronger t⊥, this can change in the Brillouin zone, as is
strikingly manifested in the case of Weyl points at which these
energies are equal and a sign change of � takes place.

E. Berry curvature and surface state topology

The appearance of boundary states is closely related to non-
trivial topology in the bulk of a material. For Chern insulators
and Weyl semimetals, this bulk topology is manifested by a
nonzero Chern number. The Chern number for an isolated band
|ρs(k)〉 of a two-dimensional periodic lattice is computed by
integrating the Berry curvature over the Brillouin zone:

Cs = 1

2π

∫
BZ

Fxy,s(k) d2k, (17)

where Fij,s(k) is the Berry curvature given by Fij,s(k) =
∂ki

Aj,s(k) − ∂kj
Ai,s(k) with Aj,s(k) = −i〈ρs(k)|∂kj

|ρs(k)〉
the Berry connection. The total Chern number of any system
has to be zero, i.e.,

∑
s Cs = 0. While correlation functions are

easily calculated, the derivatives entering the Berry curvature
complicate analytical calculations thereof. Alternatively, this
problem can be seen from the fact that a (derivative-free)

expression of the Berry curvature involves all energy eigen-
states of the model—not just the solvable surface bands.
Nevertheless, a number of instructive results can be derived.

For (quasi-)three-dimensional models, we use the solution
to the surface state in Eq. (5) such that one can write the Berry
curvature of a system with N two-dimensional A lattices as

FN,xy,i =F1,xy,i − i F (N,ri(k))
{[

∂kx
r∗
i (k)

][
∂ky

ri(k)
]

− [
∂ky

r∗
i (k)

][
∂kx

ri(k)
]}

, (18)

with

F1,xy,i = −i
[(

∂kx
〈�i(k)|)∂ky

|�i(k)〉
− (

∂ky
〈�i(k)|)∂kx

|�i(k)〉],
being the Berry curvature of a single A layer and

F (N,ri(k)) ≡ (1 − |ri(k)|2)−2

− N2|ri(k)|2N−2(1 − |ri(k)|2N )−2. (19)

We emphasize that F (N,ri(k)) contains the full N -dependence
of the Berry curvature in Eq. (18). In the limit |ri(k)| → 1,
Eq. (19) reduces to (N2 − 1)/12, thus for large N the Berry
curvature exhibits a peak scaling with N2 at those parts in the
Brillouin zone where the exact solution is not a surface state but
is completely delocalized over all layers. In contrast, whenever
|ri(k)| �= 1, the Berry curvature saturates as a function of
N consistent with the exponential localization of the wave
functions to the surface layers.

The Chern number CN,i of the solvable bands in a system
with N A lattices can be found upon integrating the Berry
curvature in Eq. (18) over the Brillouin zone as shown in
Eq. (17). When |ri(k)| = 1 everywhere, the derivative over the
second part of Eq. (18) yields zero such that the total Chern
number equals that of one layer C1,i . However, in the generic
situation when |ri(k)| �= 1, we observe in our examples that
the total Chern number grows with N as

CN,i,|r|�=1 = N C1,i , (20)

which means that the Chern number that is associated with
each A lattice is absorbed into the surface state.

Furthermore, it can be shown that a finite Chern number
on the A lattice implies Fermi arcs by considering a generic
two-band model on the A lattice whose Hamiltonian reads

Hk = d(k) · σ + d0(k)σ0, (21)

where σ are the Pauli matrices, σ0 = I2×2, and

P±(k) = 1
2 (σ0 ± d̂(k) · σ ), (22)

projects on to the upper (+) and lower (−) bands, respectively,
with d̂(k) = d(k)/|d(k)|. Using the projector, the Chern
number can be written in terms of d̂(k) as

C = 1

4π

∫
dkx

∫
dky d̂(k) ·

(
∂d̂(k)

∂kx

× ∂d̂(k)

∂ky

)
. (23)

The Chern number can thus be interpreted as the number
of times d̂(k) wraps the unit sphere. Provided the general
structure of ri(k) one can show that, for a very generic class of
models, this implies that d̂(k) renders both the numerator and
denominator of ri(k) given in Eq. (8) to vanish at different k

085443-6



ANATOMY OF TOPOLOGICAL SURFACE STATES: EXACT . . . PHYSICAL REVIEW B 96, 085443 (2017)

FIG. 2. The chain model featuring a two-band model (red and
blue sites) stacked on top of each other with a single (green) site in
between.

whenever the single layer Chern number is finite. Thus ri(k)
has zeros and infinities when the A lattice is a Chern insulator
implying surface switching and the existence of Fermi arcs in
the sense that the surface state is entirely localized at the top
and bottom layer at different points in the surface Brillouin
zone. An explicit example of this is provided in Sec. III C.

III. EXAMPLES

A. One dimension: end modes on a chain

As a simple warmup, we start by studying a one-
dimensional system, which has two degrees of freedom in
the A lattice and one degree of freedom in the intermediate B

lattice shown in Fig. 2. This chain readily satisfies conditions
(i)–(iii), and the absence of a surface momentum parameter
means that condition (iv) can only be satisfied if the A and
intermediate B lattices are coupled in an anisotropic fashion.

In its most generic form, the Hamiltonian for each A lattice
reads H = �†H1D�, where � is the annihilation operator of
an electron in the A lattice and H1D can be written in the Dirac
form

H1D = d · σ + d0σ0, (24)

with the energy eigenvalues

E± = ±|d| + d0, (25)

and eigenstates |�±〉. Due to the lack of a momentum pa-
rameter, the eigenvalues and the amplitudes of the eigenstates
are constants. The Hamiltonian for the one-dimensional chain
is given in Eqs. (2) and (3) with the phases fα,s = 1 ∀α, s,
and we set the intermediate B lattice Hamiltonian h = 0
and t⊥,A,s = ts , and t⊥,B,s = ts+2 with t⊥,α,s ∈ R∀α, s. Using

Eq. (8), we find

r±(ts) = − t1φ±,1 + t2φ±,2

t3φ±,1 + t4φ±,2
, (26)

which is a function of ts . When t1 = t3 and t2 = t4, r± = −1
and according to Eq. (9) the wave function in Eq. (5) has
equal weight on each A lattice m. However, when t1 �= t3
and/or t2 �= t4, we find |r±| �= 1 and there are end modes on the
chain. These modes either reside at the same end, e.g., at t1 =
10 t3 and t2 = 10 t4 yields r± = −10 hence both end modes
are exponentially localized around the A lattice m = N—or
they live at opposite ends, e.g., when the Hamiltonian for the
A lattice in Eq. (24) reads d = (V, 0, 0) and we require the
perpendicular hopping parameters to satisfy t1 + t2 < t3 + t4
and t1 − t2 > t3 − t4 yielding |r+| < 1 and |r−| > 1 such that
the end modes �+ and �− appear at m = 1 and m = N ,
respectively. The exactly obtained end modes of the chain
thus switch ends as a function of the perpendicular hopping
parameters ts .

B. Two dimensions: Chern and quantum spin Hall
insulators on kagome and related lattices

In this section, we study two-dimensional lattice models by
stacking (periodic) chains containing two sites in the lattice
unit cell (red and blue in Fig. 3), which are connected via an
intermediate chain with a single site per unit cell (green). The
two types of chains are stacked in an alternating fashion in
such a way that the lattice geometry is frustrated and a local
hopping constraint is naturally realized, such that conditions
(i)–(iii) are fulfilled. The four different stacking possibilities
are shown in Fig. 3, where the lattices in Figs. 3(a) and 3(d)
are related to the lattices in Figs. 3(c) and 3(b), respectively,
via sublattice exchange in every other two-site chain.

The A lattice for the models in Figs. 3(a) and 3(d) are the
two-site periodic chains in red and blue, and the intermediate B

lattice is the one-site periodic chain in green. For the lattices in
Figs. 3(b) and 3(c), however, one has to consider the composite
of three chains as the A lattice indicated by the black brackets
in the figures. The intermediate lattice is the one-site green

FIG. 3. Four ways to stack two different chains, a chain with a two-site unit cell in red and blue and a chain with a one-site unit cell in
green. If the models were fully periodic, the lattices in (a) and (d) would have three sites in the unit cell, whereas the lattices in (b) and (c)
would contain six sites in the unit cell. In (a) and (d), the two-site chains correspond to the A lattices. In (b) and (c), the A lattices are formed by
a composite of three chains as is indicated by the black brackets. The black arrows illustrate the hopping from the A lattice to the intermediate
B lattice, which leads to a zero-total hopping amplitude to the intermediate (green) site.
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chain in between. We treat all four models in detail and find
a subset of solutions to the Schrödinger equation for each
of them. First, we will show that when condition (iv) is not
fulfilled, as is the case for the lattices in Figs. 3(a)–3(c), the
system remains topologically trivial, signaled by an absence of
edge states and vanishing topological invariants, regardless of
the microscopic Hamiltonian (as long as it is local in the sense
of condition (ii)). Then, by considering models living on the
lattice displayed in Fig. 3(d), which does fulfill condition (iv),
we illuminate the relevance of condition (v). Strikingly, we
find that whenever the system has a bulk band characterized
by a unit Chern number our exact solutions describe the chiral
edge states of the model.

Let us now proceed to demonstrate what is advertised in
the preceding paragraph by considering a generic description
of translation invariant tight-binding models on the afore-
mentioned lattices. The Hamiltonian for each chain with two
sublattices in red and blue is H (kx) = �†(kx)Hch

kx
�(kx), where

� is the annihilation operator of an electron in the A lattice
and

Hch
kx

= d(kx) · σ + d0(kx)σ0. (27)

The corresponding energy eigenvalues are given by

E±(kx) = ±|d(kx)| + d0(kx), (28)

and |�±(kx)〉 are the eigenstates. In all four cases, the
Hamiltonian for the full models is given in Eqs. (2) and (3),
and we set hkx

= 0 and t⊥,α,s = t⊥ ∈ R ∀α, s. The latter can
be interpreted as a gauge choice, and does not impede our
general approach: one can always choose the perpendicular
hopping parameter t⊥ to be real by suitably redefining H (kx)
to account for the “flux” through each closed path of the lattice
[71].

We first focus on the model in Fig. 3(a). The A lattice
Hamiltonian Hkx

is given by Eq. (27), and the pertinent
phases are fA,1(kx) = fB,1(kx) = exp(−ikx/4) and fA,2(kx) =
fB,2(kx) = exp(ikx/4) such that by using Eq. (8) we imme-
diately find that r±(kx) = −1 and condition (iv) is thus not
fulfilled. The weight of the wave function on each individual
chain given in Eq. (9) is thus equal for each chain m, which
labels the A lattice, meaning that the state is fully delocalized.
We thus expect to find a topologically trivial system. Indeed,
regardless of any details of d(kx) for the A lattice Hamiltonian,
the Chern number remains zero.

Next, we look at the system in Fig. 3(b). The suitably
redefined A lattice Hamiltonian now accounts for the five sites
in the unit cell, hence we can find exact expressions for five
edge state bands. The A lattice Hamiltonian Hkx

is given by

Hkx
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t⊥e−i kx
4

Hch
kx

0
t⊥ei kx

4

t⊥ei kx
4 t⊥e−i kx

4 hch
kx

t⊥ei kx
4 t⊥e−i kx

4

t⊥e−i kx
4

0 Hch
kx

t⊥ei kx
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and the concomitant phase factors are fA,4(kx) =
fB,1(kx) = exp(ikx/4), fA,5(kx) = fB,2(kx) = exp(−ikx/4)
and fA,α(kx) = 0, α = 1,2,3 and fB,α′ (kx) = 0, α′ = 3,4,5.
Before analyzing the five solutions to the Schrödinger equation

for the full system, we first take a closer look at the solution
for the A lattice Hamiltonian Hkx

. We observe that we can
interpret the A lattice as existing out of two sub-A lattices,
the two-site chains in red and blue, and a subintermediate B

lattice, the green sites. We thus find nsub = 2 solutions of the
following form, which look similar to the solution in Eq. (5):

|�±(kx)〉 .= Ñ±(kx)

⎛
⎜⎜⎜⎝

φ±,1(kx)
φ±,2(kx)

0
s±(kx)φ±,1(kx)
s±(kx)φ±,2(kx)

⎞
⎟⎟⎟⎠, (29)

where Ñ±(kx) is the normalization factor, |�±(kx)〉 are the
eigenstates of the two-site chain, and s±(kx) = −1, which can
be straightforwardly derived. The corresponding eigenvalues
are given in Eq. (28). Plugging this and the phases into Eq. (8)
yields r±(kx) = −1 such that we retrieve a system in which the
wave functions are completely delocalized. For the remaining
three solutions, we find �i(k) = ⊕5

s=1 φi,s(k) with i = 1,2,3
with the energy Ei and again ri(kx) = −1,∀ i, independent of
the Hamiltonian used for the chain. Again, regardless of the
hopping terms included in the Hamiltonian, the system stays
in a topologically trivial phase, as expected by the absence of
edge states stemming from the breaking of condition (iv).

Now, we turn to the lattice model in Fig. 3(c), which shows
slightly more complex behavior. The A lattice Hamiltonian
again includes five sites in the unit cell and reads

Hkx
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t⊥e−i kx
4

Hch
kx

0
t⊥ei kx

4

t⊥ei kx
4 t⊥e−i kx

4 hch
kx

t⊥e−i kx
4 t⊥ei kx

4

t⊥ei kx
4

0 Hch
kx

t⊥e−i kx
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The phases for the full model are fA,4(kx) = fB,2(kx) =
exp(ikx/4), fA,5(kx) = fB,1(kx) = exp(−ikx/4) and
fA,α(kx) = 0, α = 1,2,3 and fB,α′ (kx) = 0, α′ = 3,4,5.
Similar to the model corresponding to Fig. 3(b), we find
nsub = 2 wave-function solutions as given in Eq. (29) with

s±(kx) = −ei kx
4 φ±,1(kx) + e−i kx

4 φ±,2(kx)

e−i kx
4 φ±,1(kx) + ei kx

4 φ±,2(kx)
, (30)

such that

r±(kx) = −e−i kx
4 s±(kx)φ±,1(kx) + ei kx

4 s±(kx)φ±,2(kx)

ei kx
4 φ±,1(kx) + e−i kx

4 φ±,2(kx)

= −s±(kx) s−1
± (kx) = −1.

These two wave functions are thus equally localized to each A

lattice present in the full model. However, we notice that there
may occur some localization inside the A lattice as |s±(kx)| is
not trivially equal to 1, which is shown in Figs. 4(a) and 4(b).

For the remaining three solutions to the wave function,
which read �i(k) = ⊕5

s=1 φi,s(k) with i = 1,2,3, we find a
nontrivial |ri(kx)| as shown in Fig. 5(a). However, one can
see in the corresponding energy spectrum in Fig. 5(b) that
the localized states are not topologically protected, which is
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(a) (b)

(c) (d)

FIG. 4. Plots for the kagome model in Fig. 3(d) with the chain Hamiltonian given in Eqs. (27) and (31). (a) and (b) show the inverse
localization length ln|r±(kx)| as given in Eq. (30). (c) and (d) show the energy spectrum with N = 40 and the energy is plotted in units of t ′

1

and t ′, respectively. The blue and green lines in (a) and (b) correspond to the + and − solution of the wave function, respectively, and top
and bottom orange lines in (c) and (d) depict the + and − energy solutions, respectively. (a) and (c) are plotted for t/t ′

1 = t1/t ′
1 = t ′/t ′

1 = 0,
t⊥/t ′

1 = 1, and varying values of V in units of t ′
1 in (a), and V/t ′

1 = 1 in (c). (b) and (d) are plotted for t/t ′ = t1/t ′ = t ′
1/t ′ = 0, t⊥/t ′ = 1,

and varying values of V in units of t ′ in (b), and V/t ′ = 1 in (d). (a) and (c) correspond to a topologically trivial system whereas (b) and (d)
reveal that the system is a Chern insulator, where we find that the right movers are localized on the edge m = 1 and the left movers on the edge
m = N . (a) and (b) also correspond to ln|s±(kx)| for the A lattice of the model in Fig. 3(c) with hch

kx
= 0 and the other parameters as mentioned

before.

supported by the retrieval of a zero-Chern number for these
parameters.

Finally, we turn to the kagome lattice in Fig. 3(d), which
shows significantly richer and more complex behavior. This
lattice is also of special interest as it occurs naturally in many
materials and can also be engineered in cold atom systems
[72,73]. The A lattice Hamiltonian is given by Eq. (27), and the
phases are fA,1(kx) = fB,2(kx) = exp(−ikx/4) and fA,2(kx) =
fB,1(kx) = exp(ikx/4), such that r±(kx) corresponds to the
expression in Eq. (30), and constraint (iv) is fulfilled. This
allows us to review condition (v). To specify the A lattice
Hamiltonian in Eq. (27), we use the following:

d(kx)=
(

t cos
kx

2
+ t1 sin

kx

2
, t ′ cos

kx

2
+ t ′1 sin

kx

2
, V

)
, (31)

where t , t ′, t1 and t ′1 are nearest-neighbor hopping parameters,
and V is a staggering potential, and d0(kx) = 0. We emphasize
that details of the lattice Hamiltonian are irrelevant as long as

it is local and translation invariant, and we have introduced
nearest-neighbor hopping terms only to be able to review
the localization of the state in a transparent fashion. We find
that |r±(kx)| �= 1 only when at least t ′1 �= 0 and/or t ′ �= 0 as is
shown in Fig. 4. We first review the situation where t ′1 �= 0 and
t ′ = 0, in which case both sublattice and inversion symmetry
are broken but time-reversal symmetry is preserved. We thus
expect to be unable to find a Chern-insulator phase, which is
indeed what is revealed in Figs. 4(a) and 4(c). The case in which
t ′1 = 0 and t ′ �= 0 is more interesting. Now inversion symmetry
is preserved but sublattice and time-reversal symmetry are
broken such that we are able to find a Chern insulator as
is shown in Figs. 4(b) and 4(d). We see that the energy
spectrum has two bulk gaps with a band crossing each of these
gaps. These two bands (in orange) correspond to our exact
wave-function solution in Eq. (5) and their inverse localization
length ln|r±(kx)| reveals that the right mover localizes to the
chain m = 1 and the left mover to the chain m = N , which is
in accordance with the chirality of the edge states in a Chern
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(a) (b)

FIG. 5. Plots for the model in Fig. 3(c) with the chain Hamiltonian given in Eqs. (27) with d0(kx) = 0 and d(kx) = (t cos kx

2 , t ′ cos kx

2 , V )
where t and t ′ are nearest-neighbor hopping parameters and V is a staggering potential, and hch

kx
= 0. (a) Plot of the inverse localization length

ln|ri(kx)| for t ′/t = t⊥/t = 1 and different values of V/t = 0,1,2,3 corresponding from dark to light, and where blue corresponds to r1(kx),
red to r2(kx) and green to r3(kx). (b) Energy spectrum with N = 40 shown in units of t with V/t = 1, where the orange bands indicate the
energies Ei(kx) with the lowest one corresponding to E1(kx), the middle to E2(kx) and the top to E3(kx). The two bands in cyan correspond
to the energy solutions E−(kx) and E+(kx), respectively, corresponding to the wave-function solution in Eqs. (29) and (30). Even though, the
inverse localization length shown in (a) indicates that the three solutions |�i(kx)〉 localize, the band spectrum in (b) reveals that they are not
topologically protected.

insulator. This localization is corroborated by the weight of
the wave function on each A lattice m given in Eq. (9) shown
in Fig. 6 for a system of five layers. The Chern number for
the fully periodic kagome lattice is governed by the values of
V/t⊥, and we find for half-filling that the Chern number C = 1

FIG. 6. Plot of the weight of the wave function |�−(kx)〉 on each
layer m shown in Eq. (9) for N = 5 for the model in Fig. 3(d) with the
A-lattice Hamiltonian given in Eq. (31) with t⊥/t ′ = 1 and |t⊥/V | =
2 and all other parameters equal to zero. The wave functions are
completely localized to layer m if the weight equals P−,m(kx) = 1.
Blue is P−,1(kx), red P−,2(kx), cyan P−,3(kx), magenta P−,4(kx), and
green P−,5(kx). This plot is in perfect agreement with what is shown
in Fig. 4(b).

for |t⊥/V | > 0.7. This leads to another interesting observation,
namely, that when the system is no longer a Chern insulator, the
exact solution still localizes, which is reflected by ln|r±(kx)| in
Fig. 4(b) still having a structure for V/t ′ = 2.5, t⊥/t ′ = 1. We
have thus found a Chern insulator on the kagome lattice with
chiral-edge states whose exact wave-function solution is given
in Eq. (5) when both time-reversal and sublattice symmetry are
broken simultaneously. The breaking of the first is a minimal
requirement to find a Chern insulator, whereas the breaking
of the second is inherent to our specific choice of lattice
as preserving sublattice symmetry would yield |φ±,1(kx)| =
|φ±,2(kx)| such that one trivially finds |r±(kx)| = 1. Note
that a quantum spin Hall insulator can simply be retrieved
by taking two time-reversed copies of the Chern insulator,
which introduces spin degree of freedom. In that case, the
system supports four helical-edge states, whose wave function
is described by our exact solution.

C. Three dimensions, first example: Dirac and Weyl semimetals
from stacked checkerboard models

We now turn to three-dimensional models built from
stacking two-dimensional layers in a frustrated fashion. In
the first example, the A lattice is a checkerboard lattice,
which has two sites in the unit cell, and the intermediary B

lattice is a square lattice with one site in the unit cell. By
stacking them we obtain the lattice shown in Fig. 7, which is
a three-dimensional cousin of the kagome model in Fig. 3(d).
The two-dimensional surface Brillouin zone is shown as an
inset in Fig. 8(d). Conditions (i)–(iv) are fulfilled and we have
a Weyl phase when condition (v) is fulfilled in which case
we expect that the exact solution corresponds to (a family of)
Fermi arcs. In particular, this model is well suited for exploring
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FIG. 7. The checkerboard model featuring checkerboard lattices
(red and blue sites) stacked on top of each other with a square
lattice (green) in between. Notice the relative displacement between
checkerboard lattices.

the connection between the topology of the two-dimensional
layers and the band switching properties of the surface
bands.

The Hamiltonian for the individual checkerboard lattice
is given by H (k) = �†(k)Hk�(k), where �(k) is the an-
nihilation operator of an electron in the checkerboard layer
and

Hk = d(k) · σ + d0(k)σ0. (32)

The eigenvalues read

E±(k) = ±|d(k)| + d0(k). (33)

The Hamiltonian for the full model is given in
Eqs. (2) and (3) with hk = 0, t⊥,s,α = t⊥ ∈ R∀ s, α,
and fA,1(kx) = fB,2(kx) = exp[−ikx/2

√
2] and fA,2(kx) =

fB,1(kx) = exp[ikx/2
√

2]. We find two exact solutions to the
wave function, which are given in Eq. (5) with

r±(k) = −ei kx

2
√

2 φ±,1(k) + e−i kx

2
√

2 φ±,2(k)

e−i kx

2
√

2 φ±,1(k) + ei kx

2
√

2 φ±,2(k)
. (34)

It is trivial to see that |r±(k)| = 1 when kx = 0. In Sec. II E,
we discussed that ri(k) must have zeros and infinities when
the A lattice is a Chern insulator. For this specific model, this
means that we need to solve

eis kx

2
√

2 φ±,1(k) + e−is kx

2
√

2 φ±,2(k) = 0, (35)

with s = 1 (s = −1) which corresponds to setting the numer-
ator (denominator) in Eq. (34) to zero. Using the standard
representation of the Pauli matrices, we have

|�±(k)〉 .= Ñ±(k)

(±|d(k)| + dz(k)

dx(k) + i dy(k)

)
, (36)

where Ñ±(k) is the normalization factor. The above require-
ment (35) thus decomposes into

±|d(k)| + dz(k) + cos

(
kx√

2

)
dx(k) + s sin

(
kx√

2

)
dy(k)

+ i

[
cos

(
kx√

2

)
dy(k) − s sin

(
kx√

2

)
dx(k)

]
= 0, (37)

such that the real and imaginary part of this equation have
to be zero simultaneously. When the Hamiltonian in Eq. (32)

describes a Chern insulator, we know that d(k) points in every
direction in the Brillouin zone, which means we can always
satisfy Eq. (37) at, except in pathological cases, different k, thus
implying Fermi arc like surface bands. To be more specific,
the Fermi arcs are formed as one-dimensional constant energy
contours in the two-dimensional surface bands. In these two-
dimensional bands, the argument above shows that there are
momenta where the state is entirely localized at the topmost
layer [diverging r(k)] and other points where it is identically
localized to the bottom layer [r(k) = 0]. It is also important to
note that this is independent of the presence of Weyl nodes in
the bulk as those only appear at sufficiently strong interlayer
tunneling.

We will now proceed by considering a specific layered
checkerboard model which supports a Weyl semimetal phase
at strong interlayer coupling. The Hamiltonian of a single A

layer, as specified in Eq. (32), is known to describe a Chern
insulator when it has the following components

d0(k) = 0, dx(k) = t sin

(
kx√

2

)
, dy(k) = t ′ sin

(
ky√

2

)
,

dz(k) = V + t2

[
cos

(
kx + ky√

2

)
+ cos

(
kx − ky√

2

)]
,

where t and t ′ are the nearest-neighbor hopping amplitudes,
t2 is the next-nearest-neighbor hopping amplitude, and V is
the staggering potential. The single-layer system has C = 1
at half-filling for t ′/t = t2/t = 1 and |V/t | � 2 and C = 0
for |V/t | > 2. The solution of the inverse localization length
ξ−1(k) = ln|r−(k)| is shown in Fig. 8(a) for a set of parameters
in which the checkerboard lattice features a Chern insulator,
and they agree with the solutions to Eq. (37) explicitly
mentioned in a footnote below.2 We notice that ξ−1(k) respects
the symmetry of the lattice model, which has a mirror
symmetry along the line y = 0. The black line in the plot
corresponds to the energy contour of the surface state E−(k) at
the chemical potential μ/t = −0.9. ξ−1(k) changes sign four
times when we trace the equal-energy line of the surface state
meaning that this state switches surfaces an equal number of
times. The solution to the boundary state in Eq. (5) with r±(k)
given in Eq. (34) thus describes a family of Fermi arcs, while
a constant energy contour in the manifold of these solutions,
as the one just described, describes a Fermi arc.

Moreover, we find numerically that the two-dimensional
surface band carries a Chern number whose value corresponds

2We set t ′/t = t2/t = V/t = 1 such that they agree with the param-
eters used to plot the inverse localization length ξ−1(k) = ln|r−(k)|
in Fig. 8(a). The solutions for setting the numerator and denominator
of ri(k) zero are the same for i = + and i = −. The numerator,
i.e., s = 1, is zero when k = (0,±√

2π ), (±√
2π,0), (− π

2
√

2
, 3π

2
√

2
),

( 3π

2
√

2
,− π

2
√

2
), (±

√
2

cos(∓
√

5/2)
,±

√
2

cos(±1/
√

10)
), and for the denominator, s =

−1, we find k = (0,±√
2π ), (±√

2π,0), (− π

2
√

2
,− 3π

2
√

2
), ( 3π

2
√

2
, π

2
√

2
),

(±
√

2

cos(∓
√

5/2)
,±

√
2

cos(∓1/
√

10)
). Note that these solutions can easily be

generalized for different values of the parameters. While some of the
zeros are common for the nominator and denominator, we generically
find that they also have distinct zeros as is also the case in the example
given.
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(a) (b) (c)

(d) (e)

FIG. 8. Solutions to the checkerboard model with nonzero Chern number with t ′/t = t2/t = t⊥/t = V/t = 1. In (a), we show the inverse
localization length ξ−1(k) = ln|r−(k)| given in Eq. (34). The black line is the energy contour of E−(k) at the chemical potential μ/t = −0.9.
We see that the boundary state switches surfaces four times and is thus a Fermi arc. In (b) and (c), the location of the Weyl nodes in the
three-dimensional Brillouin zone is shown from the top view in the kz direction in (b) and a two-dimensional cut at ky = 0 in (c). Red and
blue correspond to positive and negative Berry charge, respectively. The energies corresponding to the Weyl nodes are included as insets in (c).
The energy spectrum along a path in the Brillouin zone, indicated in the inset, is shown in (d) with N = 40 and the energy given in units of t . The
orange bands correspond to the Fermi arc solution and one observes Weyl points at the locations and energies indicated in (b) and (c).
The weight of the wave function associated with the lower orange band on each A lattice is shown in (e) and is in perfect agreement with (a)
and (d).

to the total number of checkerboard layers as given in Eq. (20).
The surface switching along the line �-M in the Brillouin zone
pins the presence of Weyl nodes to occur along these lines
as shown in Figs. 8(b)–8(d). Figures 8(b) and 8(c) show the
location of the Weyl nodes in the three-dimensional Brillouin
zone from a top view in the kz direction and a two-dimensional
cut at ky = 0, respectively, where red dots correspond to
positive and blue dots to negative Berry charge. These nodes
were found numerically by scanning the energy spectrum of
the fully periodic lattice model over the entire Brillouin zone
for energy gaps smaller than E/t < 0.1 and a subsequent
computation of the Berry charge of a small sphere around these
points. The numerical search for the Weyl points is greatly
simplified by the fact that they are only allowed to occur at
energies corresponding to the single-layer eigenvalues (the

Fermi arcs traverse the Weyl points), and that they can occur
only along the lines of diverging r(k) as shown in Fig. 8(d).
We see that the orange bands, which correspond to E±(k) and
are thus associated with the Fermi arcs, cross the bulk gaps
exactly at the same momentum and energy values as found for
the three-dimensional periodic model in Figs. 8(b) and 8(c). In
Fig. 9, we show plots for the Berry curvature for different N ,
which show that the value of the Berry curvature diverges along
the line in the surface Brillouin zone where the Weyl nodes
sit. The surface switching of the boundary state along the line
�-Y in the Brillouin zone takes place also in the absence of
Weyl nodes and comes about due to the complete attachment
of the boundary-state energy bands to the bulk yielding its
corresponding wave function completely delocalized by which
surface switching is facilitated. The energy band at E/t = 0
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FIG. 9. Berry curvature associated with �−(k) for the checkerboard model with t ′/t = t2/t = t⊥/t = V/t = 1 for a different number of
layers N = 1,5,10,20,30,40. The black line indicates the Brillouin zone. We see that the Berry curvature has maxima at those points in the
Brillouin zone corresponding to the location of the Weyl points.

along �-Y is highly degenerate and corresponds to the energy
solutions of the intermediate B (green) sites. That the states
belonging to these sites have zero energy along the line kx = 0
can be understood by realizing that hopping from the A

lattices to the intermediate B lattices only take place in the
x direction. The boundary state switching surfaces four times
is also confirmed by the plot of the weight of the wave function
of this state on each individual checkerboard layer shown
in Fig. 8(e). We see that the surface state localizes to the
top and bottom layer in complete accordance with Fig. 8(a).
Upon varying the value of the staggering potential with upper
bound |V/t | � 2 such that the checkerboard lattices remain in
the nonzero Chern number regime, we find that the number,
location in the Brillouin zone and energy value of the Weyl
nodes change. However, they always remain on the ky = 0 line.
As we increase the interlayer coupling, we find numerically
that only two Weyl nodes remain, which are pinned in the
three-dimensional Brillouin zone slightly below kz = 0 at the
points M and −M in the kxky-plane with energies going to
E/t ≈ 1 and −1, respectively.

It is tempting to assume that the Weyl nodes and Fermi
arcs disappear when the Chern number carried by the in-
dividual checkerboard lattices goes to zero. However, if the
Hamiltonian of the checkerboard lattice in the trivial phase is
fine-tuned to remain close to the topological phase transition,
we find that a Weyl-semimetal phase is still supported by the
three-dimensional lattice as shown in Fig. 10 for V/t = 2.1.
Figures 10(a) and 10(e) shows that the surface state still
switches surfaces four times, albeit with a weaker localization
to the surfaces as before. Again, the surface switching along
the line �-M is facilitated by the presence of Weyl nodes,
whose location and energy values are shown in Figs. 10(b) and
10(c) and they correspond to what we observe in the energy
spectrum shown in Fig. 10(d). Similarly, the surface switching

along the line �-Y is due to the attachment of the surface state
energy to the bulk bands. Upon increasing V/t , such that the
Hamiltonian on the checkerboard lattice moves further away
from the topological phase transition, we find that the Weyl
nodes disappear completely when V/t � 2.55.

Lastly, we briefly mention two more cases. In the first, the A

lattice is in the Chern-insulator phase but the energy spectrum
of the three-dimensional model does not support a Weyl phase
as shown in Fig. 11(a), which is due to the weak interplanar
coupling. In Fig. 11(b), we have plotted the inverse localization
length and one can indeed see that there is a Fermi arc, which
carries a Chern number. In the second case, we present an
example where the A lattice is in the trivial topological phase,
there are no Weyl points in the three-dimensional lattice as
shown in Fig. 11(c), but there are still Fermi arcs as shown in
Fig. 11(d). These Fermi arcs carry a zero Chern number and
are thus not topologically protected.

D. Three dimensions, second example: Weyl semimetals
and layered Chern insulators in pyrochlore iridate slabs

A pyrochlore lattice is built from alternating kagome (A)
and triangular (B) layers, where successive kagome lattices
are shifted relative to each other as shown in Fig. 12(a). The
lattice structure implies that conditions (i)–(iv) are fulfilled
hence our general expression for the surface states applies.

In this section, we use the formalism introduced in Sec. II to
show that pyrochlore slabs very generically support Fermi-arc-
like surface states, regardless of the presence of Weyl points in
the bulk. The novel scenario of Fermi-arc-like surface states in
the absence of Weyl points is particularly pertinent for recent
experiments.

A special case of the pyrochlore model where the spin-
orbit coupling was restricted to only the kagome layers
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(a) (b) (c)

(d) (e)

FIG. 10. Solutions to the checkerboard model with zero-Chern number with t ′/t = t2/t = t⊥/t = 1 and V/t = 2.1. In (a), we show the
inverse localization length ξ−1(k) = ln|r−(k)|, where the black line is the energy contour of E−(k) at the chemical potential μ/t = −0.9. The
location of the Weyl nodes is shown in (b) and (c) with red and blue corresponding to positive and negative Berry charge, respectively.
The energy spectrum along a path in the Brillouin zone, shown as an inset in Fig. 8(d), is shown in (d) with N = 40 and the energy given in
units of t . The weight of the wave function associated with the lower orange band on each A lattice is shown in (e).

has been discussed extensively by two of the authors in
Refs. [52,53]. Here we consider more realistic models of
pyrochlore lattices making direct contact to real materials
and experiments, namely Eu2Ir2O7 [68] and Nd2Ir2O7 [69]
for which pertinent slabs have recently been grown and for
potential future experiments on yet to be grown slabs of
Pr2Ir2O7. The model includes spin degree of freedom and has
two parameters: the nearest-neighbor-hopping strength t and
the spin-orbit-coupling parameter tSOC. It is directly based on
the model in Ref. [74], up to a rotation of the [111] direction
in the z direction to describe the layered structure as in the
models presented earlier. In contrast to the models discussed
earlier, we do not assume a spin polarization in a globally
fixed direction but we make use of the internal spin ordering
of pyrochlore materials. This procedure is justified by the
observation that different materials featuring the pyrochlore
lattice structure realize phases with fixed but different spin
configurations at low temperatures [75,76]. In the bulk, the
pyrochlore lattice can be seen as a collection of corner sharing
tetrahedra, where the lattice sites are located at the corners.
In all these spin-ordered phases, the preferred orientation of

a spin in the pyrochlore lattice is to point either towards or
away from the center of the tetrahedron. A spin configuration
with n spins pointing inwards is called n-in-(four-n)-out,
which is equivalent to the (four-n)-in-n-out configuration. The
configuration four-in-zero-out is often called the “all-in-all-
out” configuration as for any tetrahedron either all spins are
pointing outwards or all spins are pointing inwards [68,77].
In order to obtain a tight-binding model with a fixed spin
configuration, we apply a different spin rotation on each site
to transform the Hamiltonian to the all-in-all-out spin basis as
shown in Fig. 12(b), and finally we project the Hamiltonian
to the subspace of the spin configuration of interest. The
Hamiltonians for the different spin configurations are listed
in the Appendix.

Based on geometric considerations and intuition developed
in the models before, we expect localized states for any spin
configuration, as the local constraint involves three unit cells
in the upper layer. Furthermore, the three-in-one-out and two-
in-two-out configurations have topological nontrivial bands in
the single-layer case, and hence fulfill condition (v). Applying
Eq. (8) to the Hamiltonians given in Eq. (A2) reveals that
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(a) (b)

(c) (d)

FIG. 11. (a) and (b) Solutions to the checkerboard model with nonzero Chern number with t ′/t = t2/t = 1 and V/t = 0.5 and t⊥/t = 0.57.
In (a), we show the energy spectrum with N = 40 and the energy given in units of t along a certain path in the Brillouin zone. Even though, the A

lattice carries a Chern number, there are no Weyl points in the system. In (b), we show the inverse localization length ξ−1(k) = ln|r−(k)|, where
the black line is the solution to E−(k) at the chemical potential μ/t = −1.6. (c) and (d) Solutions with zero-Chern number with t ′/t = t2/t = 1
and V/t = 5 and t⊥/t = 3.1. (c) The energy spectrum with N = 40 and the energy given in units of t . There are no Weyl points. (d) The
inverse localization length with an equal-energy line at μ/t = −4.

all of these models indeed have nontrivial surface states. The
results for r(k) are shown in Figs. 13(a)–13(c). While in the
all-in-all-out configuration the surface state might be “hidden”

FIG. 12. (a) The pyrochlore model featuring kagome lattices
stacked on top of each other with a triangular lattice (green) in
between. The kagome layers are shifted relative to each other and
repeat every third layer. (b) The preferred spin directions pointing
towards (red) or away from (green) the center.

by the bulk bands, in the two other configurations we find
Fermi arcs when choosing the Fermi level in the bulk gap.
The two-in-two-out configuration possesses Fermi arcs even
without having Weyl points in the bulk.

In the all-in-all-out configuration, the model’s two pa-
rameters t and tSOC only occur in the linear combination
t + √

2tSOC after the spin transformation, hence we are left
with a single effective parameter in this case. By diagonalizing
the (3 × 3) A-lattice HamiltonianHk,4−0, we find a completely
flat band, which is topologically trivial. Note, however, that this
spin configuration cannot be physically realized in a single
layer, because it would lead to a large magnetization, and
should be viewed only in combination with the fourth spin on
the intermediate B layers. In Fig. 14, a graphical representation
of the full wave functions of a slab with two A lattices and one
intermediate B lattice in the all-in-all-out configurations is
shown. One easily recognizes the three bands that are given
by our construction as they have zero weight (shown in black)
on the intermediate B site with index 4.
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(a) (b) (c)

(d) (e) (f)

FIG. 13. (a)–(c) The inverse localization length ξ−1(k) = ln|r1(k)| for the lowest surface states in the pyrochlore model shown for different
spin configurations indicated in (d)–(f), respectively, with hopping parameters tSOC/t = 0.1. The black line in (b) and (c) is the energy contour
at μ/t = −1.4. (d)–(f) The energy spectra for different spin configurations with N = 40 and tSOC/t = 0.1. Energy is given in units of t .

The three-in-one-out configuration is not uniquely defined
in a finite slab, as the surface normals represent a special
direction in the model. For the sake of brevity, we restricted the
discussion to the most natural choice of the three-in-one-out
configurations, where we take the single “out”-spin to be
on the intermediate site [green in Fig. 12(a)]. Hence the
kagome layers of the all-in-all-out and the three-in-one-out
configurations have the same A-lattice Hamiltonian Hk. In
contrast to the existence of the surface states in all spin
configurations, only the three-in-one-out model harbors Weyl
points in the bulk, and does so only for small values of tSOC/t

in accordance with Ref. [70], as is shown in Figs. 13(d)–13(f).
In Fig. 15, the Berry curvature is shown for this model for a
different number of A lattices. One indeed sees a divergence
of the Berry curvature along those lines in the Brillouin zone
where the Weyl points appear.

E. Three dimensions, final example: trivial states
on layered honeycomb lattices

In this section, we study tight-binding models inspired by
KHgX (X = As, Sb, Bi) whose underlying lattice structure is
a three-dimensional analog of the two-dimensional models
in Figs. 3(b) and 3(c). The lattice is formed by stacked
honeycomb lattices, which are connected via triangular lattice
layers. In Fig. 16(a), we show the A lattice of this model,
which has five sites in the unit cell. Figure 16(b) features the
honeycomb model with one and a half A lattices.

The surface states of KHgX are known to be intriguing
featuring novel so-called hourglass fermions [78]. However,
the surface that we study is not expected to support these states,

FIG. 14. The wave-function components for a two layer slab of
the all-in-all-out model. The columns correspond to the different
eigenstates and the rows correspond to the sites, the wave-function
values are shown throughout the BZ using the domain coloring
method shown in the right bottom corner.
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FIG. 15. Berry curvature associated with �1(k) for the pyrochlore model with hopping parameters tSOC/t = 0.1 in the three-in-one-out
configuration.

which we will here corroborate by showing that our exact
solution inevitably leads to trivial states delocalized over the
full sample. While the actual KHgX materials are time-reversal
symmetric we here treat “half” of the model as this turns out to
be sufficient for understanding the absence of surface states.
Our argument proceeds in a very similar fashion as for the
analogous two-dimensional lattices [Figs. 3(b) and 3(c)] that
defy surface states.

To describe the honeycomb layers, we use Haldane’s model
[6], such that the Hamiltonian Hhoney

k and energy for the odd-
numbered honeycomb layers are given in Eqs. (32) and (33),
respectively, with

d0(k) = t2 cosφ
3∑

i=1

cos(k · δ′
i), dx(k) − idy(k) = t γk,

dz(k) = V − t2 sinφ

3∑
i=1

sin(k · δ′
i), (38)

FIG. 16. (a) The A lattice of the honeycomb model featuring
honeycomb lattices (red and blue sites) stacked on top of each
other with a triangular lattice (green) in between. Note the sublattice
exchange in the alternating honeycomb lattices. (b) The honeycomb
model where one A lattice is composed of one blue and red
honeycomb lattice and the green triangular lattice in between.

where t (t2) is the (next-)nearest-neighbor hopping ampli-
tude, φ is the phase picked up in a next-nearest-neighbor
hopping, which we from now on set as φ = π/2, V is the
staggering potential, γk ≡ ∑3

i=1 exp(ik · δi) and δi (δ′
i) are the

(next-)nearest-neighbor vectors specified in a footnote below.3

The Chern number at half-filling in a single layer is C = 1
for t/t2 = 1 and |V/t2| � 1.75 and zero otherwise. The
Hamiltonian for the even-numbered honeycomb layers is
simply given by Hhoney

−k , such that the Hamiltonian for the
A lattice Hk reads

Hk =

⎛
⎜⎜⎜⎜⎜⎝

t⊥ γ−kHhoney
k 0

t⊥ γk

t⊥ γk t⊥ γ−k 0 t⊥ γ−k t⊥ γk

t⊥ γk
0 Hhoney

−kt⊥ γ−k

⎞
⎟⎟⎟⎟⎟⎠,

where we used that γ ∗
k = γ−k. The Hamiltonian for N A

lattices is given in Eqs. (2) and (3) with hk = 0, t⊥,s,α =
t⊥ ∈ R∀ s, α, and fA,4(k) = fB,2(k) = t⊥ γk and fA,5(k) =
fB,1(k) = t⊥ γ−k.

We first discuss the case where the staggering potential is
zero, i.e., V = 0, such that Hhoney

−k = σxHhoney
k σx . As in the

analogous two-dimensional examples we notice that the A

lattice itself exists out of two sub-A lattices and one sub-
intermediate B lattice. Solving the Schrödinger equation for

3The nearest-neighbor vectors read δ1 = (1,
√

3)/2, δ2 =
(1, −√

3)/2, and δ3 = −(1, 0). The next-nearest-neighbor vectors
are δ′

1 = (3,
√

3)/2, δ′
2 = (−3,

√
3)/2, and δ′

3 = (0, −√
3), where the

complete set of next-nearest-neighbor vectors is given by {±δ′
i}.
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these nsub = 2 solutions yields

|�±(k)〉 .= Ñ±(k)

⎛
⎜⎜⎜⎜⎜⎝

φ±,1(k)

φ±,2(k)

0

s±(k)φ±,2(k)

s±(k)φ±,1(k)

⎞
⎟⎟⎟⎟⎟⎠,

where we have absorbed the sublattice exchange into the
wave function, Ñ±(k) is the normalization factor, and we see
immediately that s±(k) = −1. This leads to

r±(k) = −s±(k)
γ−k φ±,2(k) + γk φ±,1(k)

γk φ±,1(k) + γ−k φ±,2(k)
= 1.

The other three solutions have the solution �i(k) =⊕5
s=1 φi,s(k) with i = 1,2,3 and the energy Ei , and we again

find |ri(kx)| = 1,∀i.
When V �= 0, we no longer find two solutions whose

wave function has zero weight on the subintermediate B

site. This is simply the case because the Hamiltonian on the
even-numbered honeycomb layers Hhoney

−k has wave-function
solutions who can only be related to the wave-function
solutions of the Hamiltonian Hhoney

k via k → −k such that
a solution |�±(k)〉 cannot be defined in terms of the wave-
function solutions of Hhoney

k alone. However, we still find
solutions of the form Eq. (5) with |ri(kx)| = 1,∀i with i =
1,2,3,4,5 indicating that this system remains trivial.

The energy spectrum for this Hamiltonian along a path in
the two-dimensional Brillouin zone is shown in Fig. 17. There
are touching points, which are not Weyl points as there is no
state crossing the bulk gap. When each individual honeycomb
layer is a Chern insulator, the Chern number of the full system
equals the Chern number of one of the honeycomb layers,
i.e., there is no enhancement of the band Chern number as we
generically observe in models where r(k) behaves nontrivially.
Finally, we note that taking two time-reversed copies of our

FIG. 17. Plot of the energy spectrum of the honeycomb model
with N = 20 A lattice layers and the energy given in units of t ,
with t2/t = t⊥/t = 1 and V/t = 0.5. The Brillouin zone is shown as
an inset in the figure. The orange bands correspond to the exactly-
solvable states. The total Chern number is one.

model yields a time-reversal symmetric model, which makes
contact to the arguments put forward in Ref. [78] where
no specific lattice Hamiltonian is investigated but instead
symmetry arguments are used to study possible boundary
states on several surfaces. Our findings are corroborating the
conclusion of Ref. [78] that there are no nontrivial surface
states on the (001) surface of the KHgX materials class.

IV. DISCUSSION

In this work, we have presented exact solutions for the
surface states of a variety of topological and nontopological
phases on geometrically frustrated lattices. Rather being based
on fine-tuning or numerical approximations, our solutions are
remarkably general. All we need to assume is the appropriate
frustrated lattice structure—which is frequently represented in
real materials—in combination with local coupling between
neighboring layers and translation symmetry. It should be
emphasized that the exact solutions are stable; they do not
represent fragile states on the verge of being topological
but are rather representatives that can be obtained arbitrarily
deep into the various topological phases we discuss. For
instance, while the exact solvability depends on having
a local hopping coupling the different A layers only via
hopping to the intermediate B layers, the various (topological)
phases are stable to the inclusion of such terms. Considering
the pyrochlore iridates including Eu2Ir2O7 and Nd2Ir2O7 as
particularly prominent examples, quantitatively more accurate
descriptions have next-nearest-neighbor hopping terms of the
order t2/t ≈ 0.08–0.2 [19,79]. This is, albeit certainly large
enough to be quantitatively important, likely small enough
such that the intriguing phenomena, present in our large class
of solvable models, such as Fermi arcs despite the absence of
Weyl nodes, may be realized these materials.

Given the far reaching success of harnessing the properties
of frustrated systems through the microscopic understanding
of their ubiquitous flat bands in terms of localized modes,
we hope that our work will spur a development in which this
large body of knowledge will be exploited in order to deepen
our understanding also of topological phases of matter. We
have here initiated such a program by analytically calculating
a number of properties that have previously been accessible
by numerical simulation and in fine-tuned models. Building
on this, aspects of quantum transport, stability to disorder and
interactions provide obvious new avenues.

Our investigation has thus far highlighted several generic
facts. This includes the role of lattice geometry for topological
phases that are not intrinsically symmetry protected; although
Chern insulators and Weyl semimetals rely on breaking sym-
metries, in contrast to phases being protected thereby, we have
shown that they cannot be realized with strictly local (nearest
neighbor) constraints on lattices that satisfy conditions (i)–(iii)
but fail to satisfy condition (iv), while they are readily realized
once also condition (iv) is satisfied. We provided explicit ex-
amples of lattices—including two-dimensional lattices akin to
kagome lattices but with different stacking properties as well as
a three-dimensional system corresponding to the (100) grown
surface of the KHgX materials class—whose structure pro-
hibits the formation of topological phases. In glaring contrast,
spin-orbit-coupled particles on the kagome and pyrochlore
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lattices are ideally suited for realizing topological phases and,
even more generally, they support novel surface states.

In fact, we have here corroborated the recent observation
[52] that there is no one-to-one dichotomy between surface
Fermi arcs and the existence of bulk Weyl nodes; while the
Fermi arclike surface bands are always partially attached to
bulk bands, these surface bands exist also in the absence of
Weyl nodes in the bulk. The Fermi arcs occurring without Weyl
nodes are similar to those associated with type-II Weyl excita-
tions in that they are generally blurred in parts of the surface
Brillouin zone due the finite density of states in the bulk. While
this is a feature that distinguishes them from the surface states
corresponding to type-I Weyl systems, our exact solutions,
which remain identical tuning from weak to strong interlayer
coupling, highlight that both the surface eigenstates and dis-
persion are in principle completely unrelated to the existence
of bulk Weyl nodes. These observations have direct bearing
for engineered as well as naturally existing materials. Notably,
single-crystal slabs of the pyrochlore iridates Eu2Ir2O7 [68]
and Nd2Ir2O7 [69], grown precisely in the (111) direction that
we consider have been recently synthesized. The possibilities
of experimental probing are further extended by growing the
pertinent pyrochlore slabs with variable chemical composition
and doping [80]. Beyond being of great interest on their own,
the study of the pyrochlores on the slab geometry may lead
to a better understanding of the rich variety of phenomena
associated with bulk pyrochlore iridates [74,81–86].

Our work also opens up questions of fundamental nature
that call for further disquisition. Saliently, we have observed
that the solvable eigenstates generically carry a Chern number
being equal to the sum of the Chern numbers of the pertinent
bands in all layers. This happens immediately for arbitrarily
weak interlayer coupling as the eigenstates of the different
layers hybridize and amounts to a “topological selection rule”
whose implications and generality we have only touched upon
here.

Finally, we note that the anatomy of the surface states we
have provided, dissecting them into tinker toylike constituents,
may serve as a guide when engineering artificial materials.
In the context of designing devices and quantum simulators,
either in optical, cold atom systems or in the solid state, the fact
that the exact solution holds at any finite size is a particularly
attractive feature.
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APPENDIX: PYROCHLORE HAMILTONIANS

The following Hamiltonians for the pyrochlore model correspond to the different spin configurations, where the specific
configurations are given as subscripts and the blocks of the Hamiltonian matrix are given as defined in Eq. (2):

k1 =
√

2kx, k2 = kx + √
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2
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2
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