dc.contributor.author
Groß, Marcus
dc.contributor.author
Rendtel, Ulrich
dc.contributor.author
Schmid, Timo
dc.contributor.author
Bömermann, Hartmut
dc.contributor.author
Erfurth, Kerstin
dc.date.accessioned
2018-06-08T11:44:55Z
dc.date.available
2018-02-21T10:21:01.481Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22030
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25236
dc.description.abstract
Map-based regional analysis is interested to detect areas with a large
concentration of certain populations. Here kernel density estimates (KDE)
offer advantages over classical choropleth maps. However, kernel density
estimation needs exact geo-coordinates. In a recent paper Groß et al. (2017)
have proposed a measurement error model which uses local aggregates for kernel
density estimation. Their algorithm simulates "exact" geo-coordinates which
reflect the information on the aggregates. In this article we suggest two
extensions of this approach. First, we consider boundary constraints, which
are usually ignored in the KDE framework. This concerns not only the outer
limits of a municipality but also unsettled regions within a city like parks,
lakes and industrial areas. Without a boundary correction standard KDEs
underestimate the density in the vicinity of boundaries. Here we propose a
modification of the original algorithm which uses rescaled kernel functions.
Regional maps often display local percentages, for example, voters for a
special party among all voters in each voting district. Here we derive a
smooth representation of percentages which is based on the ratio of two
densities. Again, the original algorithm is modified to cope with the
estimation of a ratio of two densities. Our empirical examples refer to voting
results from Berlin. It is shown that the proposed methodology reveals a lot
of regional insight which is not produced by standard choropleth maps.
en
dc.format.extent
20 Seiten
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000945-5
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Regional Analysis
dc.subject
Kernel Density Estimation
dc.subject
Geo-Coordinates
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::338 Produktion
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::519 Wahrscheinlichkeiten, angewandte Mathematik
dc.title
Simulated geo-coordinates as a tool for map-based regional analysis
dc.identifier.urn
urn:nbn:de:kobv:188-fudocsdocument000000029065-3
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000029065
refubium.series.issueNumber
2018,3 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000009447
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access