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Abstract

Map-based regional analysis is interested to detect areas with a large concentration of certain

populations. Here kernel density estimates (KDE) offer advantages over classical choropleth

maps. However, kernel density estimation needs exact geo-coordinates. In a recent paper

Groß et al. (2017) have proposed a measurement error model which uses local aggregates for

kernel density estimation. Their algorithm simulates ”exact” geo-coordinates which reflect

the information on the aggregates.

In this article we suggest two extensions of this approach. First, we consider boundary

constraints, which are usually ignored in the KDE framework. This concerns not only the

outer limits of a municipality but also unsettled regions within a city like parks, lakes and

industrial areas. Without a boundary correction standard KDEs underestimate the density

in the vicinity of boundaries. Here we propose a modification of the original algorithm which

uses rescaled kernel functions.

Regional maps often display local percentages, for example, voters for a special party

among all voters in each voting district. Here we derive a smooth representation of percentages

which is based on the ratio of two densities. Again, the original algorithm is modified to cope

with the estimation of a ratio of two densities.

Our empirical examples refer to voting results from Berlin. It is shown that the proposed

methodology reveals a lot of regional insight which is not produced by standard choropleth

maps.
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1 Introduction

Regional analysis is often based on maps. The purpose of such maps is to display regional con-

centrations of certain populations, say, of migrants or voters for a special political party. The

level of the analysis may vary: at the administrative level from NUTS 1, at the federal state level,

down to NUTS 3, at the municipality level. However, often we may seek to analyse the regional

distribution within the limits of a municipality, say at ZIP-code level or at the level of a voting

district.

Regional analysis at this low level is confronted with several problems. First, the standard maps

use choropleths, where the regional units are uniformly colored and the color pattern is restricted

to a limited number, often as low as 4 or 5 levels. These choropleths incur information losses with

respect to the regional position of the units inside the displayed areas and also with respect to the

number of units which live in the area as their frequency is recoded to intervals that correspond to

the colors of the map. With these maps it may be difficult to identify local hot spots which cross

the area scheme of the map.

As a rule, the regional units are not of the same area size. There may be small areas and

also large areas. Therefore their interpretation via the area sizes, which is the most appealing

interpretation, can lead to wrong conclusions. As an example we display in Figure 1 the classical

representation of voting results by a choropleth map. Here the voting districts, which are of

different size, are the area units. The map displays the number of voters for a right wing party

(AfD) in the last regional Berlin elections (2016), which is grouped into eight intervals. The general

impression from Figure 1 is that the AfD is very strong in the south east of Berlin. However, as

we will see, this impression is misleading. With regular regional systems of the same size, like

grids of a fixed size, the above obstacle can be removed. But the visual impression of a grid map

can vary substantially, if the coordinates of the grid are modified. What remains, however, is the

discreteness of the representation by a discrete color scheme.

With low regional levels confidentiality issues come into play. Access to exact geo-coordinates

is regarded as too risky to protect anonymity. For example, the 1 km grid maps of the German

census atlas displays about one third of grid cells with grey color, which means ”unsettled or to

be kept secret”, see https://atlas.zensus2011.de/. Usually, grid cells with case numbers up to

three are classified as ”to be kept secret”. As an example Figure 2 displays the population counts

in a 1 km grid of the German census in 2011 for Berlin and its vicinity. Note the large percentage

of grey grid fields. Also the discontinuous representation makes it difficult to get an impression of

the population density of the population in this area.
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< 201 voters
201 - 377 voters
377 - 553 voters
553 - 729 voters
729 - 905 voters
905 - 1081 voters
1081 - 1258 voters
> 1258 voters

Figure 1: Choropleth map of votes for party AfD in regional elections 2016 in Berlin. Areas =
Voting districs

Because of confidentiality reasons access is granted only to aggregates of larger regional units,

for example, neighborhoods or, even larger, the entire municipality. Sometimes such regional

information can be accessed as ”Open Data” from the internet. For example, the Statistical Office

of Berlin (AfS) gives access to many demographic variables at the lowest urban planning units,

the so-called ”Lebensweltlich orientierte Planungsräume (LOR)”, see https://daten.berlin.de/

datensaetze. However, these small regional units are of quite different size. So choropleths based

on these units are far from being representative for areas.

Maps based on two-dimensional kernel densities avoid the shortcomings of choropleths as they

are representative for areas and as they allow to construct highest density areas independent from

administrative districts. This is an attractive tool to identify hot spots of a population of interest

and/or to identify their stability over time.

However, the prerequisite of a kernel density estimate, is the knowledge of the exact geo-

coordinates, which are not known in the case of regional aggregates. If the regional units are not

too large one may take the centroid of the regional unit as a rough guess of the true geo-coordinate

of the units in that region. Recently, Groß et al. (2017) built a bridge between the construction

of density estimates and data access to regional aggregates via a measurement-error model. In

their approach the true position is taken as the centroid position plus some error. The proposed

algorithm starts with an initial kernel density estimate assuming all units at their centroid. From
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Figure 2: 1 km grid map of German census (2011) of inhabitants. Detail from Berlin and sur-
rounding area
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this estimate new coordinates are sampled by a stratified sample where the strata sizes reflect the

totals of the regional units. This step gives a new set of geo-coordinates, which again are used to

estimate a new density. These steps are repeated until convergence is achieved. The algorithm is

an application of the Stochastic EM algorithm of Celeux et al. (1996), where the stochastic part is

represented by the stratified sampling from the kernel density, and the kernel density estimation

on the basis of the simulated geo-coordinates reflects the M-Step.

However, the kernel density estimates have their own methodological difficulties. Besides the

fixing of the smoothing parameter, it is the inherent overlap of the resulting density over the

borders of the region of interest. Even more interesting, when one is interested in low-level regional

analysis, is the ignorance of the density approach about areas within the municipality that are not

settled. These areas are parks, lakes, forests and industrial zones. Their proportion of the entire

municipality area can be considerably. In case of Berlin these non-settled areas amount to 25

percent of the total municipality area, see Figure 3. If these areas are ignored the corresponding

kernel densities are biased near the borderlines towards lower population counts. Note, that

problem of external and internal borders does not occur with the choropleth approach, at least

theoretically. So, for example, one may exempt the unsettled regions from the voting districts as

demonstrated in Figure 3, where the unsettled regions appear grey striped. However, in every-

day-use of maps larger parks, forests, lakes and industrial regions are almost never exempted from

choropleths.

< 201 voters
201 - 377 voters
377 - 553 voters
553 - 729 voters
729 - 905 voters
905 - 1081 voters
1081 - 1258 voters
> 1258 voters
non-settled

Figure 3: The display of AFD results in voting districts restricted settled areas of Berlin
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While the borderline bias of the kernel density approach has been carefully investigated in one

dimensional settings, less attention has been given to the two-dimensional case, see Thies (2016).

One straight-forward approach would be the rescale the kernel functions at each point to have a

volume of 1 over the settled area. This approach was evaluated in a simulation study for Berlin for

exact geo-coordinates, see Thies (2016). Here we will adapt this approach to the SEM algorithm.

Standard choropleths do not only display absolute figures related to one area. Often they

display percentages, for example, percentages of voters for a special party within a voting district.

On the first sight it is not obvious how percentages can be embedded into the framework of

densities. Here we will demonstrate how the ratio of densities, namely the density of the party

P voters and the density of all voters, can be used to derive a local percentage at the level of

the pixels. We also demonstrate the use of such intensity maps to display areas with high local

concentration of voters of a special party.

The article is organized as follows: Section 2 resembles the general SEM algorithm. Section

3 discusses the necessary modification to deal with the borderline problem. Section 4 deals with

the treatment of percentages. It displays the necessary modification of the SEM algorithm for the

computation of regional percentages. Section 5 is devoted to the application of these techniques

to display the voting results for the election of the Berlin regional parliament in 2016. Section 6

concludes.

2 The general algorithm for simulated geo-coordinates

Let the areas be indexed by a = 1, . . . , A. For each area the total Na (a = 1, . . . , A) of the

variable of interest is known. Then the total population U is of size N =
∑A

a=1Na. U may be

divided into A strata Ua with stratum size Na. For k ∈ Ua we assume yk, which is the coordinate

of the centroid of area a, to be a reasonable approximation of the true geo-coordinate of xk of unit

k.

Now the standard kernel density estimator f̂(x) of the population density f(x) of the variable

of interest at geo-coordinate x is

f̂(x) =
1

N |H|
∑
k∈U

K(H−1(xk − x)) (1)

where K is the kernel function and H is a two-dimensional smoothing matrix. Here we will

use H = diag(h1, h2), with suitably chosen smoothing parameters h1 and h2. We use the plug-in

approach of Wand and Jones (1994) for bandwidth selection. For our analyses we use the Gaussian

Kernel function K(x) = 1√
2π

exp(−1
2
x′x).

To keep things numerically tractable we will generate X-coordinates only on a fine grid of geo-

coordinates. Also, we will evaluate the resulting density estimate only on these grid-points. Let

xg (g = 1, . . . , G) be the geo-coordinate of the G grid points. Then the set G = {xg|g = 1, . . . , G}

6



can be separated into A subsets Ga, where all members belong to area a. The double indexed xg,a

displays the geo-coordinate of grid point g belonging to area a.

The basic SEM algorithm may be formulated as follows:

Step 1 Compute initial kernel density estimate f̂ (0)

• Use x
(0)
k = yk for all k ∈ U

• Determine smoothing parameters h
(0)
1 and h

(0)
2

• Calculate f̂ (0)(x) for all x = xg,a for all g = 1, . . . , G and all a = 1, . . . , A

Step 2 Draw a stratified sample s(n) from {xg,a|g = 1, . . . , G; a = 1, . . . , A}

• The strata sizes are Na (a = 1, . . . , A) .

• The sampling is with replacement.

• The sampling is proportional to size with f̂ (n−1)(xg,a) as size variable.

• The sampling size in the stratum of area a is Na.

Step 3 Recalculate f̂ (n) from sample s(n)

• Determine the smoothing parameters h
(n)
1 and h

(n)
2 .

• Calculate f̂ (n)(x) for all x = xg,a for all g = 1, . . . , G and all a = 1, . . . , A

Step 4 Repeat Steps 2 and 3 B times for a burn-in phase and R times for replication.

Step 5 The final density estimate f̂(x) is:

f̂(x) =
1

R

R∑
r=1

f̂ (B+r)(x)

This algorithm can be realized with the R-package kernelheaping, see Groß (2016).

3 The boundary correction of the kernel estimate

The rescaling approach basically controls which part of the kernel function lies within the settle-

ment area S. For this purpose one has to compute for every coordinate x the weight:

wx =

∫
S

1

|H|
K(H−1(x− y))dy (2)

Note, that the weight wx depends on the smoothing parameters h1 and h2.
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The rescaled kernel density estimate f̂rs(x) at geo-coordinate x is then given by:

f̂rs(x) =
1

N |H|
∑
k∈U

1

wx
K(H−1(x− xk)) (3)

In the discrete setting of the grid G the grid points which lay inside S are denoted by GS.

Furthermore, let ∆G be the area between four neighboring grid points. Then the weight wx at

coordinate x can be approximated by

wx ≈
∑
y∈GS

1

|H|
K(H−1(x− y))∆G (4)

In the case of a Gaussian Kernel we obtain:

wx =
∆G√
2π

1

h1h2

∑
(y1,y2)∈GS

exp{−0.5(
(x1 − y1)2

h1
+

(x2 − y2)2

h2
)} (5)

wx is to be computed for every x ∈ GS. As the number of grid points increases in a quadratic

fashion with the grid length, the computation of the wx may turn out to be computer intensive

as the wx have to be recalculated for every change of H. This can happen in every round of the

modified SEM algorithm displayed below.

Now the modified SEM algorithm below computes the rescaled kernel density estimate f̂rs:

Step 1a Compute the initial kernel density estimation f̂
(0)
rs :

• Use x
(0)
k = yk for all k ∈ U : All units are supposed to lay in area S ⊂ U . Also the area

centroids are supposed to lay in settled areas. The computation of the centroids may

be affected by the exemption of the unsettled areas from the original areas.

• Determine smoothing parameters h
(0)
1 and h

(0)
2 .

• Compute weights w
(0)
x for every x ∈ GS.

• Calculate f̂
(0)
rs (x) for all x ∈ GS.

Step 2a Draw a stratified sample s(n) from GS

• The strata sizes are Na (a = 1, . . . , A)

• The sampling is with replacement.

• The sampling is proportional to size with f̂
(n−1)
rs as size variable

• The sampling size in the strata of area a is Na

Step 3a Recalculate f̂
(n)
rs from sample s(n)

• Determine the smoothing parameters h
(n)
1 and h

(n)
2
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• Determine adapted weights w
(n)
x for every x ∈ GS

• Calculate f̂
(n)
rs (x) for all x ∈ GS

Step 4a Repeat Steps 2a and 3a B times for a burn-in phase and R times for replication.

Step 5a The final density estimate f̂rs(x) is:

f̂rs(x) =
1

R

R∑
r=1

f̂ (B+r)
rs (x)

4 The estimation of proportions

Let fV be the two dimensional density of voters. Correspondingly let fP be the two dimen-

sional density of voters of party P. The naming refers to the application in voting analysis.

However, P can be any variable which creates a subset of the universe of voters. Further-

more, let NV be the total number of voters and let NP the total number of voters for party

P. The expected number of voters at an rectangle of size ∆x1 × ∆x2 at coordinate x = (x1, x2)
′

is approximately given by NV fV (x1, x2)∆x1 × ∆x2 . Similarly, the expected number of voters for

party P at coordinate x = (x1, x2)
′ is obtained by NPfP (x1, x2)∆x1 × ∆x2 . Hence the ratio

fP |V (x1, x2) = NP

NV
fP (x1, x2)/fV (x1, x2) has the interpretation of a local percentage of voters for

party P, which corrects the population average NP

NV
to the local level.

The estimation of fP |V (x) = fP |V (x1, x2) can be done straightforward with the basic SEM

algorithm or its boundary corrected version of the previous sections. However, the estimation of

fP should not be carried out independently from the simulated geo-coordinates that were generated

for the voters. Instead, as all voters for party P are voters, their distribution should be concentrated

on the coordinates of the voters. If sV ⊂ G denotes the sample of grid points selected for the voters,

then for logical consistency the sample sP of voters for party P should be a subset of sV .

Let UV be the universe of voters. For each area a the number of voters is NV,a. The total

number of voters is NV . Similarly we obtain for party P voters UP , NP,a and NP .

Note, that for fixed geo-coordinates and equal smoothing factors for voters and party P voters

f̂P |V is algebraically equivalent to the Nadaraya-Watson estimator. To see the equivalence, let Pk

denote the a dummy variable, which indicates whether voter k is a voter of party P (Pk = 1) or

not (Pk = 0). The Nadaraya-Watson estimator f̂NW is then given by (Härdle (1991)):

f̂NW (x) =

1
NV

∑
k∈UV

1
|H|K(H−1(x−Xk))Pk

1
NV

∑
k∈UV

1
|H|K(H−1(x−Xk)

(6)

=
NP f̂P (x)

NV f̂V (x)
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Therefore, we obtain the following algorithm:

Step 1b Initial kernel density estimation of the densities f̂V and f̂P :

• Use x
(0)
k = yk for all k ∈ UV and all k ∈ UP

• Determine smoothing parameters h
(0)
1 and h

(0)
2

• Calculate the initial voters distribution by

f̂
(0)
V (x) =

1

NV |H|
∑
k∈UV

K(H−1(x
(0)
k − x))

• Calculate the initial party P distribution by

f̂
(0)
P (x) =

1

NP |H|
∑
k∈UP

K(H−1(x
(0)
k − x))

Step 2b Draw a stratified sample s
(n)
V of voters and a stratified sample s

(n)
P of party P voters.

• The strata sizes are NV,a for the voters and NP,a for the party P voters.

• The sampling of voters is with replacement from the grid G with sample size NV,a in

area a. The sampling is proportional to size with f̂
(n−1)
V as size variable. This generates

s
(n)
V .

• The sampling of party P voters is with replacement from s
(n)
V with sample size NP,a in

area a. The sampling is proportional to size with f̂
(n−1)
P as size variable. This generates

s
(n)
P .

Step 3b Recalculate f̂
(n)
V from the voter sample s

(n)
V and f̂

(n)
P from the party sample s

(n)
P .

• Determine the smoothing parameters h
(n)
1 and h

(n)
2 from the party P sample. These

smoothing parameters will be used for the estimation of both density estimates.

• Calculate f̂
(n)
V (x) for all x = xg,a (g = 1, . . . , G) and (a = 1, . . . , A).

• Calculate f̂
(n)
P (x) for all x = xg,a (g = 1, . . . , G) and (a = 1, . . . , A)).

Step 4b Repeat Steps 2b and 3b B times for a burn-in phase and R times for replication.

Compute for each replication r the ratio

f̂
(B+r)
P |V (x) =

f̂
(B+r)
P (x)

f̂
(B+r)
V (x)

for all x = xg,a (g = 1, . . . , G) and (a = 1, . . . , A)).
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Step 5b Compute final ratio estimate f̂P |V (x):

f̂P |V (x) =
1

R

R∑
r=1

f̂
(B+r)
P |V (x)

for all x = xg,a (g = 1, . . . , G) and (a = 1, . . . , A)).

5 Application to voting results of the Berlin regional par-

liament

We display the application of the technique of simulated geo-coordinates for the results of the

general election of the Berlin regional parliament in 2016. The data are freely available un-

der the link https://www.wahlen-berlin.de/Wahlen/BE2016/afspraes/download/download.

html. Special emphasis is given to the results for the AfD, a new right wing party in the spectrum

of German political parties. The overall percentage for the AfD was 14.1 %.

The densities for the distribution of voters are normalized to a volume of 1 under their surface.

In order to make them comparable they shoud be multiplied by the absolute number NP of voters

for party P . If we multiply the densities with the area of the pixels, which is 141× 141 m2 in our

case, we end-up with a scale which can be interpreted as the number of party P voters per pixel.

Figure 4 compares for the AfD the results of the re-scaled density maps with the choropleth

representation. Both maps exclude unsettled areas of Berlin. There are striking differences in the

regional distribution suggested by the maps.

< 201 voters
201 - 377 voters
377 - 553 voters
553 - 729 voters
729 - 905 voters
905 - 1081 voters
1081 - 1258 voters
> 1258 voters
non-settled

< 1 voters per pixel
1 - 3 voters per pixel
3 - 4 voters per pixel
4 - 6 voters per pixel
6 - 7 voters per pixel
7 - 9 voters per pixel
9 - 10 voters per pixel
10 - 12 voters per pixel
12 - 13 voters per pixel
13 - 15 voters per pixel
15 - 16 voters per pixel
16 - 18 voters per pixel
18 - 19 voters per pixel
19 - 21 voters per pixel
21 - 22 voters per pixel
> 22 voters per pixel
non-settled

Figure 4: Absolute number of voters for party AfD in regional elections 2016 in Berlin. Left:
display by Choropeth, areas =voting districts Right: number of voters per pixel

Even with the exclusion of the unsettled areas of Berlin the choropleth representation suggests
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a strong AFD frequency in the south east of Berlin which is not confirmed by the density rep-

resentation. According to the density map there is a sizeable concentration of AfD voters in the

very east of Berlin. The map also indicates reasonable concentrations of AfD voters in the former

West-Berlin part of the town. This is not recognized from the choropleth map.

< 11 voters
> 11 voters
non-settled

Figure 5: High density area covering 20 percent of AFD voters

Figure 5 displays the high density area for AfD voters. The displayed area covers 20 % of all

AfD voters. Within these clusters the density is larger than 12 voters per pixel. The area is split

into single regional clusters. Most of the clusters represent city quarters with tower building flats

from the 70-s to the 90-s of the last century. This does not only hold for former East-German

settlements in the district Mahrzahn-Hellersdorf but also for the former West-Berlin settlements

Gropius-Stadt in the south of the district Neukölln and the Märkisches Viertel in the east of the

district Reinickendorf. Such an identification of regional clusters is a good starting point for an

analysis of voting behaviour. Note that these clusters cannot be identified from the choropleth

map of Figure 4

A different attractive feature is the comparability of the re-scaled densities for different parties.
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So one can display for each area the party which achieves the highest number of voters per pixel.

Figure 6 displays the best areas per pixel for the Christian-Democrats (CDU in dark blue), the

Social-Democrats (SPD in red), the GREEN party (Grüne in green), the Left-Wing Party (Linke

in purple) and the already mentioned AFD (AFD in light blue).

CDU
SPD
LINKE
GRÜNE
AFD
FDP
non-settled

Figure 6: The winner with respect to the highest number of voters per pixel. Legend: CDU= dark
blue, SPD =red, Linke= purple, Grüne =green, AFD = light blue

If we switch to the estimation of local percentages we first have to estimate the distribution

of the voters. Figure 7 displays a density estimate of the distribution of voters per pixel. This

density varies considerably within Berlin which is the reason why the choropleth maps of absolute

figures are so misleading in this case.

Figure 8 compares the local proportions of AfD voters via density estimation with the results

from voting districts. There is a high coincidence of results in the two maps, displaying high

percentage numbers in the south-east and the north-east of Berlin. However, the percentages of

the single voting districts are somewhat erratic and don’t offer a combination of adjacent voting

districts to low and high percentage areas.
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< 18 voters per pixel
18 - 36 voters per pixel
36 - 53 voters per pixel
53 - 70 voters per pixel
70 - 87 voters per pixel
87 - 105 voters per pixel
105 - 122 voters per pixel
122 - 139 voters per pixel
139 - 156 voters per pixel
156 - 173 voters per pixel
173 - 191 voters per pixel
191 - 208 voters per pixel
208 - 225 voters per pixel
225 - 242 voters per pixel
242 - 260 voters per pixel
> 260 voters per pixel
non-settled

Figure 7: The number of voters per pixel

< 5.0%
5.0 - 10.0%
10.0 - 15.0%
15.0 - 20.0%
20.0 - 25.0%
25.0 - 30.0%
30.0 - 35.0%
35.0 - 40.0%
40.0 - 45.0%
45.0 - 50.0%
> 50.0%
non-settled

< 5.0%
5.0 - 10.0%
10.0 - 15.0%
15.0 - 20.0%
20.0 - 25.0%
25.0 - 30.0%
30.0 - 35.0%
35.0 - 40.0%
40.0 - 45.0%
45.0 - 50.0%
> 50.0%
non-settled

Figure 8: Percentage of AFD-Voters: Left: Local proportions via densities, Right: Proportions in
voting districts
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This is the great advantage of the density approach. Here it is possible to create smooth high

percentage areas. There are two versions of such high percentage areas. The first version asks for

the area where a prefixed limit is exceeded. Such an area is shown in Figure 9 for a limit of 10

percent. It displays for broad regions a substantial support of the AfD.

< 10.0%
> 10.0%
non-settled

Figure 9: High percentage areas: Percentage for AfD is larger than 10 %

The second possibility to display high percentage areas is to keep the percentage of the covered

area fixed, say 20 percent, and to ask for the limit which defines the borderline of this area. Such

a display is convenient for comparisons between different parties. Figure 10 compares the high

percentage areas for the six parties which became elected into the parliament. For each party the

covered part of the settled area of Berlin is 20 percent. However, the party specific areas cover

quite different parts of Berlin. For, example, the right wing AfD and left wing LINKE are almost

entirely concentrated on the former East-Berlin. Also the limit values, which define the borderline

of the areas, vary substantially. Table 1 compares these limit values with the average percentages

of the party at the Berlin level. By definition the limit value is higher than the average over Berlin.

However, the difference between these baseline figures are small for the SPD and the GRÜNE party
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Party Limit value of area average value Berlin
CDU 27.3 17.3
SPD 23.7 21.6
LINKE 22.5 15.6

GRÜNE 16.8 15.2
AfD 20.9 14.2
FDP 10.0 6.7

Table 1: Comparison of the limit values of high percentage areas and the average percentage over
the Berlin area for different parties

and they are much bigger in the case of the other parties. This indicates that the results for the

SPD and the GRÜNE party are more homogeneously distributed than for other parties.

Finally, local percentage maps offer the possibility to display at each point the party with the

highest percentage. Because of the smooth shape of the local percentages their maximum is also

smooth. Figure 11 compares a map of the local winners derived from the densities with a choropleth

which displays for each voting district the color of the party with the maximum percentage in the

district. Despite the different construction the two maps give a similar impression where the

respective parties have a local majority.

6 Concluding Remarks

The basic idea of the density approach presented here is to produce maps with smooth concen-

tration areas. The rationale of this idea in our examples is that party preferences do not vary

in a discontinuous manner, like the choropleths suggest. However, the extension of the density

approach to respect unsettled areas and the borderlines of the city introduces some kind of dis-

continuity. The degree of smoothing depends on the number of observations, which is given in our

example by the number of voters in Berlin, which is about NV = 1.6 million voters. Because of

these very high case numbers also small regional differences were well displayed in our examples.

In the case of party percentages there was a very good coincidence with the choropleth map but

without their intrinsic discontinuities.

An alternative approach with respect to smoothing is the interpolation by spline approximation,

see for example Fahrmeir et al. (2013). Here, we could interpolate the proportion of voters of a

certain party at the centroids of the voting districts. With this approach the degree of smoothing

is regulated by technical parameters, like the degree of the interpolating polynom, the number of

knots or the size of a penalizing term in case of penalized splines. Furthermore, the resulting map

of interpolated party proportions lacks the intuitive interpretation as a local limit of a proportion

of a certain party. Also smoothing via splines does not use the geographical form of the voting

districts, which is used in our approach.

It is the aim of a regional analysis to link information on local concentrations with regional
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Figure 10: High percentage areas for 6 parties: Top: Left: CDU (dark blue), Right: SPD (red);
Middle: Left: Linke (purple) , Right: Grüne (green), Bottom: Left: AfD (light blue), Right: FDP
(yellow). Covered area is 20 % of the settled population
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Figure 11: The party with the highest local percentage compared to the winner of the voting
districts: CDU (dark blue), SPD (red), Linke (purple) , Grüne (green), AFD (light blue), FDP
(yellow).

information from other sources. In the previous examples we used information about the former

division of Berlin into East- and West-Berlin. We also used information about the settlement

structure of Berlin. Such additional information can be displayed by background maps which can

be combined with the density maps. Such an enrichment of maps with information is the general

aim of GIS-software, see the textbook of Mitchell (2005) on Spatial Measurement and Statistics. In

this context kernel density estimates are often referred to as ”heat maps”. However, it is generally

assumed here that the geo-coordinates are exactly known.

With the approach presented here it is possible to produce density maps not only for voting

variables but for all variables with a discrete measurement of regional totals. Often these variables

and the information on their local totals can be accessed via an open data portal; for example,

the open data portal of Berlin may be reached by https://daten.berlin.de/. In Figures 12 and

13 the local aggregates from 447 local planning unit districts on children were used to estimate

their regional density in Berlin. Then the geo-coordinates of local service units are displayed as

dots in the map. From such a service map it is easy to identify mis-allocations of service units, see

Ruhanen (2018). For example, Figure 12 displays the density of children under the age of 6. Here

the dots display the location of Kindergardens. The figure clearly demonstrates that the strong

local concentrations of children are well reflected by the allocation of kindergardens. Contrarily,

the allocation of pediatrists in Figure 13 does apparently not meet the concentration areas of

children below the age of 18.

Therefore our approach opens a lane to a broad and efficient use of publicly available micro

data for the planning and formulation of service needs.

One particular feature of the density approach is the possibility to compare the evolution of

high density areas over time. It is attractive for the regional analysis of voting results to see

whether the high density regions are stable over time or not, see for example the analysis of the
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Figure 12: The estimated density of children under the age of 6 from regional aggregates and the
allocation of Kindergardens in Berlin. Graphic taken from Ruhanen (2018)

Figure 13: The estimated density of children under the age of 18 from regional aggregates and the
allocation of pediatrists in Berlin. Graphic taken from Ruhanen (2018)
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Berlin results for the elections of the German Bundestag over seven election periods (1990 to 2013)

under https://wahl.tagesspiegel.de/2017/karten/berlin/. With the choropleth approach

one is immediately confronted with the problem of changing shapes of the voting districts for

subsequent elections. Here one would have to recalculate the former voting results to the actual

voting districts, which turns out to be a tedious work. Note, that this problem does not occur

with our approach, as the resulting map is independent from the aggregates which were used for

the computation of the density.
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