The aim of this study is to identify gene expression profiles associated with hyaluronic acid (HA) treatment of normal and osteoarthritis (OA)-like tissue- engineered cartilage. 3D cartilage micromasses were treated with tumour necrosis factor-α (TNF-α) (OA-inducer) and/or HA for 7 days. Viability was examined by PI/FDA staining. To document extracellular matrix (ECM) formation, glycosaminoglycans (GAG) were stained with Safranin-O and cartilage-specific type II collagen was detected immunohistochemically. Genome-wide gene expression was determined using microarray analysis. Normal and OA-like micromasses remained vital and showed a spherical morphology and homogenous cell distribution regardless of the treatment. There was no distinct difference in immunolabeling for type II collagen. Safranin-O staining demonstrated a typical depletion of GAG in TNF-α-treated micromasses (−73%), although the extent was limited in the presence of HA (−39%). The microarray data showed that HA can influence the cartilage metabolism via upregulation of TIMP3 in OA-like condition. The upregulation of VEGFA and ANKRD37 genes implies a supportive role of HA in cartilage maturation and survival. The results of this study validate the feasibility of the in vitro OA model for the investigation of HA. On the cellular level, no inhibiting or activating effect of HA was shown. Microarray data demonstrated a minor impact of HA on gene expression level.