dc.contributor.author
Krumnow, Christian
dc.contributor.author
Veis, L.
dc.contributor.author
Legeza, Ö.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2018-06-08T10:45:40Z
dc.date.available
2017-03-09T12:38:26.003Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21043
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24340
dc.description.abstract
Tensor network states and specifically matrix-product states have proven to be
a powerful tool for simulating ground states of strongly correlated spin
models. Recently, they have also been applied to interacting fermionic
problems, specifically in the context of quantum chemistry. A new freedom
arising in such nonlocal fermionic systems is the choice of orbitals, it being
far from clear what choice of fermionic orbitals to make. In this Letter, we
propose a way to overcome this challenge. We suggest a method intertwining the
optimization over matrix product states with suitable fermionic Gaussian mode
transformations. The described algorithm generalizes basis changes in the
spirit of the Hartree-Fock method to matrix-product states, and provides a
black box tool for basis optimization in tensor network methods.
en
dc.format.extent
6 Seiten
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Fermionic Orbital Optimization in Tensor Network States
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 117 (2016), 21, Artikel Nr. 210402
dc.identifier.sepid
56269
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.117.210402
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.117.210402
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000026588
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000007864
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007