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Tensor network states and specifically matrix-product states have proven to be a powerful tool for
simulating ground states of strongly correlated spin models. Recently, they have also been applied to
interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in
such nonlocal fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic
orbitals to make. In this Letter, we propose a way to overcome this challenge. We suggest a method
intertwining the optimization over matrix product states with suitable fermionic Gaussian mode trans-
formations. The described algorithm generalizes basis changes in the spirit of the Hartree-Fock method to
matrix-product states, and provides a black box tool for basis optimization in tensor network methods.
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Capturing strongly correlated quantum systems is one of
the major challenges of modern theoretical and computa-
tional physics. Recent years have seen a surge of interest in
the development of potent numerical methods based on
tensor networks to approximate ground states of interacting
lattice models [1–7], building upon the success of the
density-matrix renormalization group (DMRG) [1]. It has
become clear that such ideas are also applicable to fermionic
systems [8–10], and even to systems of quantum chemistry
[11–19], lacking the locality present in lattice models in
condensed-matter systems. Such tools allow us in principle
to approximate the full configuration interaction solution to
good accuracy with reasonable effort, going, in instances,
beyond conventional approaches to quantum chemistry,
such as coupled cluster [20], configuration interaction,
density-functional theory [21,22], or Monte Carlo based
methods [23–25], as convincingly shown by first imple-
mentations of DMRG algorithms in quantum chemistry
(QC-DMRG) [11–15]. Yet, there is a new obstacle to be
overcome: Tensor network methods have originally been
tailored to capture local interactions, and, consequently,
ground states exhibiting short-range correlations and entan-
glement area laws [7]. Systems in quantum chemistry pose
new challenges due to the inherent long-ranged interactions,
which are present no matter in what basis the systems are
expressed. New questions, hence, arise concerning the
optimal topology and physical (orbital) basis used to
construct the tensor network state [13–19,26–28].
In this Letter, we propose a novel approach towards

making use of tensor network methods in quantum chem-
istry by suggesting an adaptive scheme of updating basis
transformations “on the fly” in conjunction with tensor
network updates. In this way, we bring together advantages
of matrix product states—which can capture strongly
correlated states, but are tailored to short-ranged

correlations and low entanglement—and fermionic
Gaussian mode transformations—for which entanglement
is no obstacle, but non-Gaussian correlations are. We,
hence, go significantly beyond previous approaches
towards optimizing fermionic bases in tensor network
approaches to quantum chemistry. Previous DMRG
implementations in quantum chemistry allowing for an
optimization of the physical basis restrict the mode trans-
formations to permutations and separate the optimization
over the basis and state such that multiple DMRG runs are
necessary [29]. As a first attempt, basis optimizations using
a few transformations have been implemented for tree
tensor networks; however, this has been found to be
unstable [19]. Mixing fermionic orbitals from an active
space—the space considered here—with further ones from
an additional external space has also been studied [30–32].
In these approaches orbital transformations are carried out
again between different DMRG runs. In contrast to this, we
perform the mode transformations within the active space
in parallel to the state optimization and directly optimize
the entanglement structure of the tensor network.
We focus on matrix-product states, but explain in what

way the idea is generally applicable. We also discuss the
role of symmetries and the geometry of the problem at
hand. The basis optimization is incorporated into the
standard two-site QC-DMRG and can be added to existing
implementation without increasing the computational costs
of the DMRG. The resulting scheme can be used in parallel
to a ground state search or as a preprocessing step in which
the physical basis is optimized in a first phase, restricting
the bond dimension of the MPS used to medium values and
calculating the final ground state in the optimized basis
with higher accuracy.
System.— In this Letter, we are concerned with strongly

correlated interacting fermionic models with a finite
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number of relevant modes as they appear in the quantum
chemistry context. In the second quantized form the
Hamitonian takes the form

H ¼
Xnp

i;j¼1

ti;jc
†
i cj þ

1

2

Xnp

i;j;k;l¼1

vi;j;k;lc
†
i c

†
jclck; ð1Þ

where cj is a fermionic annihilation operator associated to
the mode labeled j satisfying the canonical anticommuta-
tion relations fci; cjg ¼ 0 and fc†i ; cjg ¼ δi;j, and the
coupling t and v are such that H is Hermitian. p denotes
the number of different fermion species present for each of
the n orbitals, e.g., spin-up and -down electrons. The one
particle modes form the basis of single particle Hilbert
space Hnp. Any fermionic state will be an element of the

fermionic Fock space F ¼ ⨁
np

k¼0

⋀k Hnp, where ∧ denotes

the exterior product and ∧0Hnp ¼ C, with a basis formed
of all Slater determinants jxi, where x ∈ f0; 1gnp, of the
initial single particle modes. We refer to this basis as the
physical basis. The Jordan Wigner transformation estab-
lishes an isomorphism between F and the Hilbert space of
n qudits H⊗n

d ¼ Cdn with p ¼ log2 d. By choosing any
ordering of the orbitals such systems can be viewed as one-
dimensional lattices of n sites with long-range interactions.
MPS and general idea.—For a one-dimensional quan-

tum lattice with n sites, where each site is described by
a d-dimensional Hilbert space Hd, an open boundary
matrix product state (MPS) vector takes the general form

jψi ¼
Xd

α1;…;αn¼1

Aα1
½1�…Aαn

½n�jα1i ⊗ … ⊗ jαni; ð2Þ

where Aαm
½m� ∈ CDm−1×Dm and fjαig form a basis of Hd and

D0 ¼ 1 ¼ Dn. If the bond dimension D ∈ N is allowed to
vary arbitrarily over different sites, every quantum state of
the lattice can be written as in Eq. (2) [33]. Restricting the
maximal bond dimension along the chain to a fixed value
Dmax creates the submanifoldMDmax

of the full state space.
Approximations of the ground state of a given Hamiltonian
within this submanifold can be found using the density
matrix renormalization group algorithm (DMRG) which, as
an alternating least square method, optimizes the entries of
the MPS tensors ðA½m�Þm iteratively [28,34–36].
The freedom one has in this construction is a redefinition

of the fermionic modes by a linear transformation. Linear
transformations of a set of fermionic annihilation operators
fcig to a new set fdig satisfying the canonical anticom-
mutation relations are captured by ci ¼

Pnp
j¼1 Ui;jdj, with a

unitary mode transformation U ∈ UðnpÞ. This change of
the single particle modes induces a transformation of the
physical basis of F . Under this change of basis a fermionic
state vector jψð1Þi transforms to jψðUÞi ¼ GðUÞjψð1Þi

with the Gaussian unitary transformation GðUÞ ¼
exp ½Pi;jðlnU†Þi;jc†i cj� acting in Fock space. The
transformation on Cdn induced from the Jordan Wigner

transformation is given by gðUÞ ¼ ⨁
np

k¼0

⋀k U†, where

⋀0U† ¼ 1.
We now turn to describing ground states of fermionic

Hamiltonians with MPS expressed in a given basis,
where the approximatability of the states strongly depends
on the choice of basis [26,27]. Specifically, denoting
the Hamiltonian written in terms of the transformed modes
by HðUÞ ¼ GðUÞ†HGðUÞ, we are interested in the
solutions of

ðUopt; jψoptiÞ ¼ argmin
U∈UðnpÞ;jψi∈MDmax

hψ jHðUÞjψi: ð3Þ

Note that the Hartree-Fock method is readily included in
Eq. (3) by the case Dmax ¼ 1, when jψi is restricted to be a
Slater determinant. Identifying the optimal or close-to
optimal basis for a general Hamiltonian and Dmax in the
sense of Eq. (3) would provide a deeper understanding of
the entanglement structure of ground states appearing in
quantum chemistry, but since this is a nonconvex problem,
approximate solutions are accessible only. Here, we take an
approach that iteratively finds close to optimal solutions
numerically by optimizing over the ansatz-class depicted
in Fig. 1.
Compositions of local mode transformations.—In order

to calculate approximations to the solutions of Eq. (3) and
avoiding stability and performance issues of a direct global
optimization, we perform successive local mode trans-
formations in parallel to a two-site QC-DMRG and use a
few additional global reorderings of the orbitals as in
Refs. [27,29] to leave local minima during the optimization
process. Given a state vector jψi, a site-index m ∈ ½n − 1�
and a cost function fm which will be discussed below we
solve

Uloc
opt ¼ argmin

U∈V
fm(jψð1pm ⊕ U ⊕ 1pn−pm−2pÞi); ð4Þ

with 1k denoting the k-dimensional identity matrix and V ⊂
Uð2pÞ needs to be chosen depending on the symmetries of
the system. The global basis change is then composed of

FIG. 1. Illustration of the general ansatz class of an MPS with
varying physical basis, where gðUÞ is a Gaussian transformation
defined by a mode transformation U ∈ UðnpÞ as described in the
main text.
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local unitaries which are solutions of Eq. (4) for differentm
and act nontrivially on overlapping areas of the lattice and
intermediate global reorderings of the lattice sites.
The cost function is chosen according to the following

paradigm. The bond dimension needed for a bipartition of
the system to approximate a state up to a predefined
accuracy can be upper bounded using the Rényi entropies
SαðρredÞ of the reduced state for α < 1 [37],
where SαðρÞ ¼ log trρα=ð1 − αÞ. We, therefore, iteratively
minimize the S

1
2 entropy over the chosen bipartition by

using the cost function fð1Þm ðjψiÞ ¼ ∥Σm
ψ ∥1, where Σm

ψ

denotes the Schmidt spectrum of jψi for a bipartiting
cut between sites m and mþ 1. With increasing dimen-
sion of V, which growth with the number of species per
orbital p, and bond dimension Dmax the optimization of

fð1Þm becomes slow. Efficiency can be gained by minimizing

fð4Þm ¼ −∥Σm
ψ ∥44 of which we can calculate the gradient

∇Ui;j
fð4Þm ðjψð1pm ⊕ U ⊕ 1pn−pm−2pÞiÞ analytically and

efficiently in the bond dimension as shown in the
Supplemental Material [38]. The optimization of S2 will
not lead to certified bounds on the required bond dimen-
sion, but will favor stronger decays in the Schmidt
spectrum similar as the minimization of S

1
2.

The results presented here have been obtained by

optimizing the one norm of the Schmidt spectrum, fð1Þm .

The optimization of fð4Þm can be applied if V has a higher
dimension, which appear for p > 1 if the system lacks
symmetries. Both the choice of the cost function and
symmetries influence the choice of V as argued in the
following.
Optimization set.—In the presence of symmetries,

choosing a physical basis which can be labeled by good
quantum numbers decouples different symmetry sectors
in the coefficient tensors of the Hamitonian and the MPS
and allows for more efficient computations. Only mode
transformations, which commute with the generators of
the symmetry transformations, will preserve the structure
imposed by the symmetry.
In general, QC-DMRG algorithms only exploit a sub-

group of the full symmetry group of a specific Hamiltonian,
such as conservation of the number of particles, spin
reflection symmetries, Abelian point group symmetries,
or a SUð2Þ spin rotation symmetry [1,16,39–42] (see also
Ref. [28]). Here, we consider for the states the case of
particle number conservation of each species, which is an
Abelian symmetry and allows for an easy implementation
of symmetric MPS [43] and want the local mode trans-
formations to respect the SUð2Þ symmetry of the consid-
ered systems. The admissible transformations in this case
are of the form U ¼ U⊕p

n with Un ∈ UðnÞ acting on one
species of fermions.
The cost functions fm chosen above depend only upon

the Schmidt spectrum of the state for a cut between sites m

and mþ 1 and are therefore insensitive to mode trans-
formations of the form Um ⊕ Umþ1 with Uq ∈ UðpÞ
acting only on the modes associated to the lattice site q.
To obtain a nonredundant parametrization of the unitaries
used in the optimization in Eq. (4) we restrict it to the set of
left cosets Uð2pÞ=UðpÞ ×UðpÞ, which is isomorphic to
the Grassmann manifold Gð2p; pÞ. Efficient implementa-
tions of optimization algorithms such as the conjugate
gradient method within Grassmann manifolds using 2p2

parameters are described in Refs. [44,45]. If we restrict
ourselves to mode transformations that preserve the SUð2Þ
symmetry, the relevant mode transformations are para-
metrized by Gð2; 1Þ, leaving 2 optimization parameters in
each step. Focusing on this case here with medium values

for Dmax, we can obtain Uloc
opt of f

ð1Þ
m by using gradient free

schemes such as the Nelder-Mead method, due to the small
number of parameters.
Algorithm.—Combined with an approximation of the

ground state of a given Hamiltonian, local mode trans-
formations naturally extend a two-site DMRG. A single
two-site DMRG step results in a blocked tensor
A½m;mþ1� ∈ Cd2×Dm−1×Dmþ1 . In the generic case, restoring
the MPS format in Eq. (2) by decomposing the blocked
tensor into local tensors A0

½m� ∈ Cd×Dm−1×D0
m and A0

½mþ1� ∈
Cd×D0

m×Dmþ1 will lead to D0
m > Dmax such that the found

state needs to be projected into MDmax
by discarding the

D0
m −Dmax smallest values of the resulting Schmidt spec-

trum Σm
ψ . The projection yields a truncation error

ϵt ¼
P

iσ
2
i , where σi ∈ Σm

ψ are the discarded singular
values. If we allow for a local mode transformation before
the blocked tensor is decomposed, the truncation error can
be reduced.
Using the gauge invariance of MPS, we bring the MPS to

a mixed normalized state; i.e., matrices of sites q < m are
left normalized whereas matrices associated to sites q >
mþ 1 are right normalized [2,46]. We can then calculate
Σm
ψ from the blocked tensor A½m;mþ1�. We optimize the basis

by solving Eq. (4) while keeping expectation values of the
state, such as the energy, constant by using hψ jHjψi ¼
hψðUÞjHðU†ÞjψðUÞi with U ¼ 1pm ⊕ Uloc

opt ⊕ 1pn−pm−2p.
As the mode transformation acts nontrivially only on sites
m, mþ 1 the transformed state vector jψi can be repre-
sented by

A½k�ðUÞ ¼ A½k�ð1Þ; k ∈ ½n�nfm;mþ 1g; ð5Þ

Aα;β
½m;mþ1�ðUÞ ¼

X

α0;β0
gðUÞðα;βÞ;ðα0;β0ÞAα0;β0

½m;mþ1�ð1Þ: ð6Þ

Operators such as the Hamiltonian can be transformed effi-
ciently using their second quantized representation. For an
operator O¼Pnp

i1;…;is;j1;…;jr¼1oi1;…;is;j1;…;jrc
†
i1
…c†iscjr…cj1

with o ¼ oð1Þ, the coefficients transform under a mode
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transformation according to oðUÞ ¼ ðU†Þ⊗soð1ÞU⊗r. As
most operators of interest, e.g., the Hamiltonian, contain
terms with small s and r, those transformations can be
implemented efficiently; with cost scaling asO(ðnpÞsþr−1)
for local transformations.
Standard QC-DMRG algorithms use complementary

operators [12,14,15] in order to reduce the computational
cost of each DMRG step. In the Appendix we show that
complementary operators transform as general operators
under local mode transformations and argue that local
mode transformation can be found and applied in a time not
exceeding the computational cost of a single DMRG step.
This allows us to keep the structure and the computational
complexity of the two-site DMRG algorithm and perform
basis optimizations essentially for free with the algorithm in
Table I.
Numerical results.—We use a QC-DMRG algorithm

which uses the dynamical block state selection approach
[15] and configuration interaction based dynamically
extended active space [16] procedure to accelerate the
convergence and adapt the basis of the physical space by
the algorithm described above. As a test system, we have
chosen the electron configuration of a beryllium ring built
from 6 Be atoms. This system has recently been inves-
tigated [27] and a strong dependence of the convergence of
the DMRG from the initial basis was observed. We
investigate the molecule in a stretched geometry with an
interatomic distance of 3.3 Å. As initial bases we use the
Hartree-Fock (HF) basis of the system and a localized basis
derived from the HF orbitals by a Foster-Boys localization
[47]. Such localized orbitals are widely used in QC-DMRG
calculations and are known to yield a better convergence
for the Be ring [27].
Starting from the according initial basis we iteratively

apply the following scheme: we run the standard
QC-DMRG for 2 sweeps, perform 8 additional sweeps
together with the local mode transformation as described in
Table I, and reorder the basis according to its mutual
information patterns [29]. Hereby, we either fix the
truncation error ϵtrc made in each step or set a hard cut
on Dmax. The results of our calculations are show in Fig. 2.
In the left panel of Fig. 2 we show how the bond dimension
behaves for a ground state search with a bounded truncation

error ϵtrc ≤ 10−6 and Dmin ¼ 64 for a calculation in the HF
basis and optimized bases obtained by the above scheme
starting from the HF orbitals.
It is key to the method proposed that the optimization of

the basis leads to a significant decrease of needed resources
already in the first iteration, where after the tenth iterations
of basis optimization the needed bond dimension is more
than 1 order of magnitude smaller than in the unoptimized
orbitals. For realistic applications of the scheme, inter-
mediate high bond dimensions during the calculation need
to be avoided. The right panel of Fig. 2 shows the relative
error in energy reached when performing a calculation with
Dmax ¼ 256 starting in the HF and localized basis. As
noted before, the localized basis allows for a more efficient
approximation of the ground state than the HF basis. The
basis optimization allows us to further significantly opti-
mize both the HF and the localized basis. Starting from the
HF orbitals we obtain a basis for which the relative error in
energy drops by 1 order of magnitude from 1.52 × 10−4 to
1.2 × 10−5. Beginning at the localized basis allows us to
reduce the relative error in energy from 3.7 × 10−6 to
8.3 × 10−7. Note that the energy in the optimized basis

TABLE I. Two-site DMRGwith adaptive mode transformations.

1 iterate over neighboring sites m ∈ ½n − 1�:
2 get blocked tensor Aα;β

½m;mþ1� (e.g., from two-site DMRG)
3 calculate (local) minimum Uloc

opt of fmðjψð1 ⊕ U ⊕ 1ÞiÞ
4 if fmjψð1 ⊕ Uloc

opt ⊕ 1Þi < fmðjψð1ÞiÞ:
5 transform jψi with U by updating

Aα;β
½m;mþ1� ¼

P
d
α0;β0¼1

gðUloc
optÞðα;βÞ;ðα0;β0ÞAα0;β0

½m;mþ1�
and transform relevant operators with U†

6 calculate A½m�, A½mþ1� by decomposing A½m;mþ1�
with truncation and update MPS with new tensors

FIG. 2. Numerical results for the Be ring of 6 Be atoms with
interatomic distance of 3.3 Å. All calculations have been
performed with a Uð1Þ ×Uð1Þ symmetric open boundary
MPS and local mode transformations which keep the SUð2Þ
symmetry of the Hamiltonian. Both diagrams show results of the
described optimization for the physical basis. In the left panel we
show the bond dimension needed for a bounded truncation error
ϵtrc ≤ 10−6 and Dmin ¼ 64 when starting in the HF basis. The
dark blue dashed line corresponds to a calculation in the HF basis,
the blue dotted and light blue line correspond to the first and the
10th iteration of the calculation with basis optimization. The right
panel compares the relative error in energy ðhψ jHjψi − E0Þ=E0

obtained by calculations with Dmax ¼ 256, where the reference
value for the ground state energy E0 has been obtained from a
calculation with Dmax ¼ 2048 in the localized basis. The dark
blue dashed and red dashed-dotted lines show the results for a
calculation in the HF and localized basis, respectively. In light
blue and orange we plot the relative error of the 15th and 10th
iteration of the calculation with basis optimization starting in the
HF and localized basis, respectively.
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starting from the HF orbitals is slightly worse than the
energy obtained in the localized orbitals, reflecting the fact
that finding the optimal basis is a hard global optimization
problem.
We have repeated similar calculations for different

configurations of the Be ring; at the equilibrium configu-
ration and close to the avoided crossing. In each case we
have been able to find a physical basis allowing for a more
efficient approximation of the ground state. This illustrates
that the above scheme can significantly and efficiently
optimize a given initial basis. As the local mode trans-
formation can be added with no increase of the computa-
tional cost to an existing two-site DMRG and typically
yield already in the first iteration of the basis optimization a
significant improvement of the basis our scheme extends
the standard QC two-site DMRG.
Conclusion and perspectives.— In this work, we have

presented a scheme that adapts the physical basis an MPS is
formulated in by applying Gaussian transformations in an
approach that is truly variational and controlled in the error.
Incorporating local Gaussian transformations into the two-
site DMRG algorithm allows us to optimize both the basis
and the MPS iteratively. The resulting algorithm success-
fully optimizes the physical basis such that distinctly better
approximations of the ground state by an MPS can be
identified.
It should be manifest from the description of the method

that the same idea is equally applicable to other tensor
networks, due to the locality of the transformations. In
particular, tree-tensor network approaches [19,48,49] can
readily be combined with the methods laid out here.
Similarly, they are expected to be helpful for periodic
boundary condition MPS [36,50] and 2D lattice systems
[3,4,35]. In addition, the above scheme can be directly
combined with recent developments for the time evolution
of MPS [51] in order to obtain a time evolution with
variational physical basis.
Our general strategy—of combining tensor networks

with fermionic transformations—complements the recent
interesting approach of Ref. [52], which is similar in mind
set, but where these two components are put together in the
opposite order. There, a matrix-product operator is applied
onto a free fermionic wave function. In contrast to that
approach, we here retain efficient contractibility, however.
The approach taken in this work can also be seen as a
variational principle that allows us to find the optimal
fermionic tensor network in Ref. [53], where a fixed
fermionic basis change is being made use of. Widening
the scope, these tools seem also helpful in related
approaches making use of a big data machinery to capture
strongly correlated quantum systems. For example, com-
pressed sensing ideas can help finding localized Wannier
functions [54,55], which in turn can be made use of in
density functional theory [21,22]. The approach pursued
here may also help in identifying the deterministic space

in semistochastic full configuration interaction quantum
Monte Carlo calculations [23,25], which complements
other works combining tensor network approaches with
quantum Monte Carlo methods [56,57]. In conjunction
with the tools developed here, a combined approach close
to optimally representing fermionic correlated states seems
within reach.
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