dc.contributor.author
Hardtke, Jan-David
dc.date.accessioned
2018-06-08T07:26:22Z
dc.date.available
2014-07-16T08:44:05.830Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/17966
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21683
dc.description.abstract
Let X be a real Banach space. A subset B of the dual unit sphere of X is said
to be a boundary for X, if every element of X attains its norm on some
functional in B. The well-known Boundary Problem originally posed by Godefroy
asks whether a bounded subset of X which is compact in the topology of
pointwise convergence on B is already weakly compact. This problem was
recently solved by Pfitzner in the positive. In this note we collect some
stronger versions of the solution to the Boundary Problem, most of which are
restricted to special types of Banach spaces. We shall use the results and
techniques of Pfitzner, Cascales et al., Moors and others.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
weak compactness
dc.subject
extreme points
dc.subject
epsilon-weakly relatively compact sets
dc.subject
epsilon-interchangeable double limits
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Some remarks on stronger versions of the boundary problem for Banach spaces
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020603
refubium.mycore.reportnumber
A /13/2010
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /13/2010
refubium.mycore.derivateId
FUDOCS_derivate_000000003711
dcterms.accessRights.openaire
open access