id,collection,dc.contributor.author,dc.date.accessioned,dc.date.available,dc.date.issued,dc.description.abstract[de],dc.format.extent,dc.identifier.uri,dc.language,dc.relation.ispartofseries,dc.rights.uri,dc.subject,dc.subject.ddc,dc.title,dc.type,dcterms.accessRights.openaire,refubium.affiliation.other,refubium.affiliation[de],refubium.mycore.derivateId,refubium.mycore.fudocsId,refubium.mycore.reportnumber,refubium.series.issueNumber,refubium.series.name,refubium.series.reportNumber
"2bfc4ec7-fa53-4155-ae79-52373d037c32","fub188/17741","Hardtke, Jan-David","2018-06-08T07:26:22Z","2014-07-16T08:44:05.830Z","2010","Let X be a real Banach space. A subset B of the dual unit sphere of X is said
to be a boundary for X, if every element of X attains its norm on some
functional in B. The well-known Boundary Problem originally posed by Godefroy
asks whether a bounded subset of X which is compact in the topology of
pointwise convergence on B is already weakly compact. This problem was
recently solved by Pfitzner in the positive. In this note we collect some
stronger versions of the solution to the Boundary Problem, most of which are
restricted to special types of Banach spaces. We shall use the results and
techniques of Pfitzner, Cascales et al., Moors and others.","15 S.","https://refubium.fu-berlin.de/handle/fub188/17966||http://dx.doi.org/10.17169/refubium-21683","eng","urn:nbn:de:kobv:188-fudocsseries000000000226-9","http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen","Boundary||weak compactness||convex hull||extreme points||epsilon-weakly relatively compact sets||epsilon-interchangeable double limits","500 Naturwissenschaften und Mathematik::510 Mathematik","Some remarks on stronger versions of the boundary problem for Banach spaces","Preprint","open access","Institut für Mathematik:::bbcc0fd4-8a69-48ba-bf5a-6eae54fc4a88:::600","Mathematik und Informatik","FUDOCS_derivate_000000003711","FUDOCS_document_000000020603","A /13/2010","Preprints, Serie A: Mathematik","Freie Universität Berlin, Fachbereich Mathematik und Informatik","A /13/2010"