dc.contributor.author
Campbell, Earl Terence
dc.date.accessioned
2018-06-08T07:16:12Z
dc.date.available
2015-02-12T12:57:38.043Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/17541
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21425
dc.description.abstract
Error-correcting codes protect quantum information and form the basis of
fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum
computation require codes with an exceedingly rare property, a transversal
non-Clifford gate. Codes with the desired property are presented for d-level
qudit systems with prime d. The codes use n=d−1 qudits and can detect up to
∼d/3 errors. We quantify the performance of these codes for one approach to
quantum computation known as magic-state distillation. Unlike prior work, we
find performance is always enhanced by increasing d.
en
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Enhanced Fault-Tolerant Quantum Computing in d-Level Systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 113 (2014), 23, Artikel Nr. 230501
dc.identifier.sepid
41582
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.113.230501
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.113.230501
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000021831
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004521
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007